Cenk Celik, A. Franco-Obregón, E. Lee, J. Hui, Zheng Yang
{"title":"磁场方向和地形支架协同促进间充质干细胞软骨形成","authors":"Cenk Celik, A. Franco-Obregón, E. Lee, J. Hui, Zheng Yang","doi":"10.2139/ssrn.3686389","DOIUrl":null,"url":null,"abstract":"Mesenchymal stem cell (MSC) chondrogenesis is modulated by diverse biophysical cues. We have previously shown that brief, low-amplitude pulsed electromagnetic fields (PEMFs) differentially enhance MSC chondrogenesis in scaffold-free pellet cultures versus conventional tissue culture plastic (TCP), indicating an interplay between magnetism and micromechanical environment. Here, we examined the influence of PEMF directionality over the chondrogenic differentiation of MSCs laden on electrospun fibrous scaffolds of either random (RND) or aligned (ALN) orientations. Correlating MSCs' chondrogenic outcome to pFAK activation and YAP localisation, MSCs on the RND scaffolds experienced the least amount of resting mechanical stress and underwent greatest chondrogenic differentiation in response to brief PEMF exposure (10 min at 1 mT) perpendicular to the dominant plane of the scaffolds (Z-directed). By contrast, in MSC-impregnated RND scaffold, greatest mitochondrial respiration resulted from X-directed PEMF exposure (parallel to the scaffold plane) and was associated with curtailed chondrogenesis. MSCs on TCP or the ALN scaffolds exhibited greater resting mechanical stress and accordingly, were unresponsive, or negatively responsive, to PEMF exposure from all directions. The efficacy of PEMF-induced MSC chondrogenesis is hence regulated in a multifaceted manner involving focal adhesion dynamics, as well as mitochondrial responses, culminating in a final cellular response. The combined contributions of micromechanical environment and magnetic field orientation hence will need to be considered when designing magnetic exposure paradigms.","PeriodicalId":346455,"journal":{"name":"Pharmacology eJournal","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Directionalities of Magnetic Fields and Topographic Scaffolds Synergise to Enhance MSC Chondrogenesis\",\"authors\":\"Cenk Celik, A. Franco-Obregón, E. Lee, J. Hui, Zheng Yang\",\"doi\":\"10.2139/ssrn.3686389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mesenchymal stem cell (MSC) chondrogenesis is modulated by diverse biophysical cues. We have previously shown that brief, low-amplitude pulsed electromagnetic fields (PEMFs) differentially enhance MSC chondrogenesis in scaffold-free pellet cultures versus conventional tissue culture plastic (TCP), indicating an interplay between magnetism and micromechanical environment. Here, we examined the influence of PEMF directionality over the chondrogenic differentiation of MSCs laden on electrospun fibrous scaffolds of either random (RND) or aligned (ALN) orientations. Correlating MSCs' chondrogenic outcome to pFAK activation and YAP localisation, MSCs on the RND scaffolds experienced the least amount of resting mechanical stress and underwent greatest chondrogenic differentiation in response to brief PEMF exposure (10 min at 1 mT) perpendicular to the dominant plane of the scaffolds (Z-directed). By contrast, in MSC-impregnated RND scaffold, greatest mitochondrial respiration resulted from X-directed PEMF exposure (parallel to the scaffold plane) and was associated with curtailed chondrogenesis. MSCs on TCP or the ALN scaffolds exhibited greater resting mechanical stress and accordingly, were unresponsive, or negatively responsive, to PEMF exposure from all directions. The efficacy of PEMF-induced MSC chondrogenesis is hence regulated in a multifaceted manner involving focal adhesion dynamics, as well as mitochondrial responses, culminating in a final cellular response. The combined contributions of micromechanical environment and magnetic field orientation hence will need to be considered when designing magnetic exposure paradigms.\",\"PeriodicalId\":346455,\"journal\":{\"name\":\"Pharmacology eJournal\",\"volume\":\"156 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacology eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3686389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3686389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Directionalities of Magnetic Fields and Topographic Scaffolds Synergise to Enhance MSC Chondrogenesis
Mesenchymal stem cell (MSC) chondrogenesis is modulated by diverse biophysical cues. We have previously shown that brief, low-amplitude pulsed electromagnetic fields (PEMFs) differentially enhance MSC chondrogenesis in scaffold-free pellet cultures versus conventional tissue culture plastic (TCP), indicating an interplay between magnetism and micromechanical environment. Here, we examined the influence of PEMF directionality over the chondrogenic differentiation of MSCs laden on electrospun fibrous scaffolds of either random (RND) or aligned (ALN) orientations. Correlating MSCs' chondrogenic outcome to pFAK activation and YAP localisation, MSCs on the RND scaffolds experienced the least amount of resting mechanical stress and underwent greatest chondrogenic differentiation in response to brief PEMF exposure (10 min at 1 mT) perpendicular to the dominant plane of the scaffolds (Z-directed). By contrast, in MSC-impregnated RND scaffold, greatest mitochondrial respiration resulted from X-directed PEMF exposure (parallel to the scaffold plane) and was associated with curtailed chondrogenesis. MSCs on TCP or the ALN scaffolds exhibited greater resting mechanical stress and accordingly, were unresponsive, or negatively responsive, to PEMF exposure from all directions. The efficacy of PEMF-induced MSC chondrogenesis is hence regulated in a multifaceted manner involving focal adhesion dynamics, as well as mitochondrial responses, culminating in a final cellular response. The combined contributions of micromechanical environment and magnetic field orientation hence will need to be considered when designing magnetic exposure paradigms.