网络物理系统的任务感知脆弱性评估

Xiaotian Wang, M. Davis, Junjie Zhang, V. Saunders
{"title":"网络物理系统的任务感知脆弱性评估","authors":"Xiaotian Wang, M. Davis, Junjie Zhang, V. Saunders","doi":"10.1109/Trustcom.2015.496","DOIUrl":null,"url":null,"abstract":"Designing secure cyber-physical systems (CPS) is fundamentally important and performing vulnerability assessment becomes indispensable. In this paper, we discuss our ongoing work on building an automated mission-aware vulnerability CPS assessment framework that can accomplish three objectives including i) mapping CPS missions into infrastructural components, ii) evaluating global impact of each vulnerability, and iii) achieving verifiable results and high flexibility. In order to accomplish these objectives, we follow a model-assisted analysis strategy. Specifically, we take advantage of CPS simulator to model the behaviors of CPS components under different missions, our framework facilitates a bottom-up approach to construct a holistic model of a CPS that aim at profiling relationships among all CPS components. Formal methods, including program symbolic execution, logic programming, and linear optimization, have been employed to analyze the model, which build mathematical rigor into our framework. The framework first identifies mission-critical components, then discovers all attack paths from system access points to mission-critical components, and finally recommends the optimized mitigation plan.","PeriodicalId":277092,"journal":{"name":"2015 IEEE Trustcom/BigDataSE/ISPA","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Mission-Aware Vulnerability Assessment for Cyber-Physical Systems\",\"authors\":\"Xiaotian Wang, M. Davis, Junjie Zhang, V. Saunders\",\"doi\":\"10.1109/Trustcom.2015.496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing secure cyber-physical systems (CPS) is fundamentally important and performing vulnerability assessment becomes indispensable. In this paper, we discuss our ongoing work on building an automated mission-aware vulnerability CPS assessment framework that can accomplish three objectives including i) mapping CPS missions into infrastructural components, ii) evaluating global impact of each vulnerability, and iii) achieving verifiable results and high flexibility. In order to accomplish these objectives, we follow a model-assisted analysis strategy. Specifically, we take advantage of CPS simulator to model the behaviors of CPS components under different missions, our framework facilitates a bottom-up approach to construct a holistic model of a CPS that aim at profiling relationships among all CPS components. Formal methods, including program symbolic execution, logic programming, and linear optimization, have been employed to analyze the model, which build mathematical rigor into our framework. The framework first identifies mission-critical components, then discovers all attack paths from system access points to mission-critical components, and finally recommends the optimized mitigation plan.\",\"PeriodicalId\":277092,\"journal\":{\"name\":\"2015 IEEE Trustcom/BigDataSE/ISPA\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Trustcom/BigDataSE/ISPA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Trustcom.2015.496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Trustcom/BigDataSE/ISPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Trustcom.2015.496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

设计安全的网络物理系统(CPS)至关重要,进行漏洞评估变得必不可少。在本文中,我们讨论了我们正在进行的构建任务感知脆弱性自动化CPS评估框架的工作,该框架可以实现三个目标,包括i)将CPS任务映射到基础设施组件中,ii)评估每个漏洞的全球影响,以及iii)实现可验证的结果和高灵活性。为了实现这些目标,我们遵循模型辅助分析策略。具体来说,我们利用CPS模拟器来模拟不同任务下CPS组件的行为,我们的框架促进了自下而上的方法来构建一个CPS的整体模型,旨在分析所有CPS组件之间的关系。正式的方法,包括程序符号执行,逻辑编程和线性优化,已经被用来分析模型,建立数学严谨性到我们的框架。该框架首先识别关键任务组件,然后发现从系统访问点到关键任务组件的所有攻击路径,最后推荐优化的缓解计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mission-Aware Vulnerability Assessment for Cyber-Physical Systems
Designing secure cyber-physical systems (CPS) is fundamentally important and performing vulnerability assessment becomes indispensable. In this paper, we discuss our ongoing work on building an automated mission-aware vulnerability CPS assessment framework that can accomplish three objectives including i) mapping CPS missions into infrastructural components, ii) evaluating global impact of each vulnerability, and iii) achieving verifiable results and high flexibility. In order to accomplish these objectives, we follow a model-assisted analysis strategy. Specifically, we take advantage of CPS simulator to model the behaviors of CPS components under different missions, our framework facilitates a bottom-up approach to construct a holistic model of a CPS that aim at profiling relationships among all CPS components. Formal methods, including program symbolic execution, logic programming, and linear optimization, have been employed to analyze the model, which build mathematical rigor into our framework. The framework first identifies mission-critical components, then discovers all attack paths from system access points to mission-critical components, and finally recommends the optimized mitigation plan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Sensor Deployment Approach Using Fruit Fly Optimization Algorithm in Wireless Sensor Networks Study on the Coverage of Adaptive Wireless Sensor Network Based on Trust A Security Topology Protocol of Wireless Sensor Networks Based on Community Detection and Energy Aware WAVE: Secure Wireless Pairing Exploiting Human Body Movements Quantitative Trustworthy Evaluation Scheme for Trust Routing Scheme in Wireless Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1