有限块长度域的高斯倍数和随机访问

Recep Can Yavas, V. Kostina, M. Effros
{"title":"有限块长度域的高斯倍数和随机访问","authors":"Recep Can Yavas, V. Kostina, M. Effros","doi":"10.1109/ITA50056.2020.9244955","DOIUrl":null,"url":null,"abstract":"This paper presents finite-blocklength achievability bounds for the Gaussian multiple access channel (MAC) and random access channel (RAC) under average-error and maximal-power constraints. Using random codewords uniformly distributed on a sphere and a maximum likelihood decoder, the derived MAC bound on each transmitter's rate matches the MolavianJazi-Laneman bound (2015) in its first- and second- order terms, improving the remaining terms to $\\frac{1}{2}\\frac{{\\log n}}{n} + O\\left( {\\frac{1}{n}} \\right)$ bits per channel use. The result then extends to a RAC model in which neither the encoders nor the decoder knows which of K possible transmitters are active. In the proposed rateless coding strategy, decoding occurs at a time nt that depends on the decoder's estimate t of the number of active transmitters k. Single-bit feedback from the decoder to all encoders at each potential decoding time ni, i ≤ t, informs the encoders when to stop transmitting. For this RAC model, the proposed code achieves the same first-, second-, and third-order performance as the best known result for the Gaussian MAC in operation.","PeriodicalId":137257,"journal":{"name":"2020 Information Theory and Applications Workshop (ITA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Gaussian Multiple and Random Access in the Finite Blocklength Regime\",\"authors\":\"Recep Can Yavas, V. Kostina, M. Effros\",\"doi\":\"10.1109/ITA50056.2020.9244955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents finite-blocklength achievability bounds for the Gaussian multiple access channel (MAC) and random access channel (RAC) under average-error and maximal-power constraints. Using random codewords uniformly distributed on a sphere and a maximum likelihood decoder, the derived MAC bound on each transmitter's rate matches the MolavianJazi-Laneman bound (2015) in its first- and second- order terms, improving the remaining terms to $\\\\frac{1}{2}\\\\frac{{\\\\log n}}{n} + O\\\\left( {\\\\frac{1}{n}} \\\\right)$ bits per channel use. The result then extends to a RAC model in which neither the encoders nor the decoder knows which of K possible transmitters are active. In the proposed rateless coding strategy, decoding occurs at a time nt that depends on the decoder's estimate t of the number of active transmitters k. Single-bit feedback from the decoder to all encoders at each potential decoding time ni, i ≤ t, informs the encoders when to stop transmitting. For this RAC model, the proposed code achieves the same first-, second-, and third-order performance as the best known result for the Gaussian MAC in operation.\",\"PeriodicalId\":137257,\"journal\":{\"name\":\"2020 Information Theory and Applications Workshop (ITA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA50056.2020.9244955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA50056.2020.9244955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文给出了平均误差和最大功率约束下高斯多址信道(MAC)和随机接入信道(RAC)的有限块长可达性边界。使用均匀分布在球体上的随机码字和最大似然解码器,每个发射机速率的派生MAC界在其一阶和二阶项中与MolavianJazi-Laneman界(2015)相匹配,将其余项提高到每个信道使用$\frac{1}{2}\frac{{\log n}}{n} + O\left( {\frac{1}{n}} \right)$位。然后将结果扩展到RAC模型,其中编码器和解码器都不知道K个可能的发送器中哪个是活动的。在所提出的无速率编码策略中,解码发生的时间nt取决于解码器对活动发送器数量k的估计t。在每个可能的解码时间ni i≤t时,解码器向所有编码器提供的单比特反馈通知编码器何时停止传输。对于这个RAC模型,所建议的代码实现了与高斯MAC运行中最著名的结果相同的一阶、二阶和三阶性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gaussian Multiple and Random Access in the Finite Blocklength Regime
This paper presents finite-blocklength achievability bounds for the Gaussian multiple access channel (MAC) and random access channel (RAC) under average-error and maximal-power constraints. Using random codewords uniformly distributed on a sphere and a maximum likelihood decoder, the derived MAC bound on each transmitter's rate matches the MolavianJazi-Laneman bound (2015) in its first- and second- order terms, improving the remaining terms to $\frac{1}{2}\frac{{\log n}}{n} + O\left( {\frac{1}{n}} \right)$ bits per channel use. The result then extends to a RAC model in which neither the encoders nor the decoder knows which of K possible transmitters are active. In the proposed rateless coding strategy, decoding occurs at a time nt that depends on the decoder's estimate t of the number of active transmitters k. Single-bit feedback from the decoder to all encoders at each potential decoding time ni, i ≤ t, informs the encoders when to stop transmitting. For this RAC model, the proposed code achieves the same first-, second-, and third-order performance as the best known result for the Gaussian MAC in operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO is Very Useful for Pilot-Free Uplink Communications Simplified Ray Tracing for the Millimeter Wave Channel: A Performance Evaluation On Marton's Achievable Region: Local Tensorization for Product Channels with a Binary Component Improve Robustness of Deep Neural Networks by Coding On Nonnegative CP Tensor Decomposition Robustness to Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1