基于似然比和马尔可夫链的密度预测评估方法

Yushu Li, Jonas Andersson
{"title":"基于似然比和马尔可夫链的密度预测评估方法","authors":"Yushu Li, Jonas Andersson","doi":"10.2139/ssrn.2416269","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a likelihood ratio and Markov chain based method to evaluate density forecasting. This method can jointly evaluate the unconditional forecasted distribution and dependence of the outcomes. This method is an extension of the widely applied evaluation method for interval forecasting proposed by Christoffersen (1998). It is also a more refined approach than the pure contingency table based density forecasting method in Wallis (2003). We show that our method has very high power against incorrect forecasting distributions and dependence. Moreover, the straightforwardness and ease of application of this joint test provide a high potentiality for further applications in both financial and economical areas.","PeriodicalId":106740,"journal":{"name":"ERN: Other Econometrics: Econometric Model Construction","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Likelihood Ratio and Markov Chain Based Method to Evaluate Density Forecasting\",\"authors\":\"Yushu Li, Jonas Andersson\",\"doi\":\"10.2139/ssrn.2416269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a likelihood ratio and Markov chain based method to evaluate density forecasting. This method can jointly evaluate the unconditional forecasted distribution and dependence of the outcomes. This method is an extension of the widely applied evaluation method for interval forecasting proposed by Christoffersen (1998). It is also a more refined approach than the pure contingency table based density forecasting method in Wallis (2003). We show that our method has very high power against incorrect forecasting distributions and dependence. Moreover, the straightforwardness and ease of application of this joint test provide a high potentiality for further applications in both financial and economical areas.\",\"PeriodicalId\":106740,\"journal\":{\"name\":\"ERN: Other Econometrics: Econometric Model Construction\",\"volume\":\"195 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Econometric Model Construction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2416269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric Model Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2416269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于似然比和马尔可夫链的密度预测方法。该方法可以综合评价结果的无条件预测分布和相关性。该方法是对Christoffersen(1998)提出的广泛应用的区间预测评价方法的扩展。它也是比Wallis(2003)中基于列联表的纯密度预测方法更精细的方法。我们证明了我们的方法对不正确的预测分布和依赖有很高的能力。此外,该联合测试的直接性和易用性为进一步在金融和经济领域的应用提供了很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Likelihood Ratio and Markov Chain Based Method to Evaluate Density Forecasting
In this paper, we propose a likelihood ratio and Markov chain based method to evaluate density forecasting. This method can jointly evaluate the unconditional forecasted distribution and dependence of the outcomes. This method is an extension of the widely applied evaluation method for interval forecasting proposed by Christoffersen (1998). It is also a more refined approach than the pure contingency table based density forecasting method in Wallis (2003). We show that our method has very high power against incorrect forecasting distributions and dependence. Moreover, the straightforwardness and ease of application of this joint test provide a high potentiality for further applications in both financial and economical areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rank Determination in Tensor Factor Model A Toolkit for Robust Risk Assessment Using F-Divergences One-factor Hull-White Model Calibration for CVA - Part I: Instrument Selection With a Kink High-Dimensional Granger Causality Tests with an Application to VIX and News Selective Linear Segmentation For Detecting Relevant Parameter Changes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1