PIV和LIF技术联合应用于杆束内部流场和温度场的测量

Li Xing, Sichao Tan, Zhengpeng Mi, Peiyao Qi, Huang Yunlong
{"title":"PIV和LIF技术联合应用于杆束内部流场和温度场的测量","authors":"Li Xing, Sichao Tan, Zhengpeng Mi, Peiyao Qi, Huang Yunlong","doi":"10.1115/ICONE26-81526","DOIUrl":null,"url":null,"abstract":"Thermal hydraulic research of reactor core is important in nuclear energy applications, the flow and heat transfer characteristics of coolant in reactor fuel assembly has a great influence on the performance and safety of nuclear power plants. Particle image velocimetry (PIV) and Laser induced fluorescence (LIF) are the instantaneous, non-intrusive, whole-field fluid mechanics measuring method. In this study, the simultaneous measurement of flow field and temperature field for a rod bundle was conducted using PIV and LIF technique. A facility system, utilizing the matching index of refraction approach, has been designed and constructed for the measurement of velocity and temperature in the rod bundle. In order for further study on complex heat and mass transfer characteristic of rod bundle, the single-phase experiments on the heating conditions are performed. One of unique characteristics of the velocity and temperature distribution downstream the spacer grid was obtained. The experimental results show that the combined use of PIV and LIF technique is applied to the measurement of multi-physical field in a rod bundle is feasible, the measuring characteristics of non-intrusive ensured accuracy of whole field data. The whole field experimental data obtained in rod bundle benefits the design of spacer grid geometry.","PeriodicalId":289940,"journal":{"name":"Volume 9: Student Paper Competition","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow and Temperature Fields Measurement Inside Rod Bundle by the Combined Use of PIV and LIF Technique\",\"authors\":\"Li Xing, Sichao Tan, Zhengpeng Mi, Peiyao Qi, Huang Yunlong\",\"doi\":\"10.1115/ICONE26-81526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal hydraulic research of reactor core is important in nuclear energy applications, the flow and heat transfer characteristics of coolant in reactor fuel assembly has a great influence on the performance and safety of nuclear power plants. Particle image velocimetry (PIV) and Laser induced fluorescence (LIF) are the instantaneous, non-intrusive, whole-field fluid mechanics measuring method. In this study, the simultaneous measurement of flow field and temperature field for a rod bundle was conducted using PIV and LIF technique. A facility system, utilizing the matching index of refraction approach, has been designed and constructed for the measurement of velocity and temperature in the rod bundle. In order for further study on complex heat and mass transfer characteristic of rod bundle, the single-phase experiments on the heating conditions are performed. One of unique characteristics of the velocity and temperature distribution downstream the spacer grid was obtained. The experimental results show that the combined use of PIV and LIF technique is applied to the measurement of multi-physical field in a rod bundle is feasible, the measuring characteristics of non-intrusive ensured accuracy of whole field data. The whole field experimental data obtained in rod bundle benefits the design of spacer grid geometry.\",\"PeriodicalId\":289940,\"journal\":{\"name\":\"Volume 9: Student Paper Competition\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Student Paper Competition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICONE26-81526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICONE26-81526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

堆芯热工水力研究在核能应用中具有重要意义,堆芯燃料组件中冷却剂的流动和传热特性对核电站的性能和安全有很大影响。粒子图像测速(PIV)和激光诱导荧光(LIF)是瞬时、非侵入式、全场流体力学测量方法。本研究采用PIV和LIF技术对抽油杆束的流场和温度场进行了同时测量。设计并构建了一套利用匹配折射率法测量抽油杆束速度和温度的设备系统。为了进一步研究棒束的复杂传热传质特性,进行了加热条件下的单相实验。得到了间隔栅下游速度和温度分布的一个独特特征。实验结果表明,PIV和LIF技术结合应用于杆束多物理场测量是可行的,非侵入性的测量特点保证了整个现场数据的准确性。在抽油杆束中获得的整个现场实验数据,有利于隔震网格的几何设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flow and Temperature Fields Measurement Inside Rod Bundle by the Combined Use of PIV and LIF Technique
Thermal hydraulic research of reactor core is important in nuclear energy applications, the flow and heat transfer characteristics of coolant in reactor fuel assembly has a great influence on the performance and safety of nuclear power plants. Particle image velocimetry (PIV) and Laser induced fluorescence (LIF) are the instantaneous, non-intrusive, whole-field fluid mechanics measuring method. In this study, the simultaneous measurement of flow field and temperature field for a rod bundle was conducted using PIV and LIF technique. A facility system, utilizing the matching index of refraction approach, has been designed and constructed for the measurement of velocity and temperature in the rod bundle. In order for further study on complex heat and mass transfer characteristic of rod bundle, the single-phase experiments on the heating conditions are performed. One of unique characteristics of the velocity and temperature distribution downstream the spacer grid was obtained. The experimental results show that the combined use of PIV and LIF technique is applied to the measurement of multi-physical field in a rod bundle is feasible, the measuring characteristics of non-intrusive ensured accuracy of whole field data. The whole field experimental data obtained in rod bundle benefits the design of spacer grid geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heat Transfer and Fluid Flow Characteristics of One Side Heated Vertical Rectangular Channel Applied As Vessel Cooling System of VHTR Hydraulic Characteristics Research on SG Under Tube Plugging Operations Using FLUENT Study on Flow Structure in a Supersonic Steam Injector Electrochemical Measurement of Radio-Activated Metal Under High Temperature Condition Simulation Research on Thermal-Hydraulic Performance of a Natural Circulation Integrated Pressurized Water Reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1