在博客网络上查找语义级前体

Telmo Menezes, Camille Roth, Jean-Philippe Cointet
{"title":"在博客网络上查找语义级前体","authors":"Telmo Menezes, Camille Roth, Jean-Philippe Cointet","doi":"10.1504/IJSCCPS.2011.044170","DOIUrl":null,"url":null,"abstract":"In this work, we study semantic-level precedence relationships between participants in a blog network. Our methodology has two steps: a process to identify units of discussion at the semantic level and a probabilistic framework to estimate temporal relationships between blogs, in terms of the order in which they arrive at those units of discussion. We propose dyadic precursor scores that can be used to construct semantic-level precedence networks. From these scores, we derive global precursor and laggard scores. Dyadic precursor scores are compared with URL linking to show that the semantic-level temporal relationships we estimate are an indicator of influence. Global scores are compared to traditional link degree and PageRank metrics, and we uncover relationships between semantic-level temporal behaviour and popularity. We show that our method reveals information about the network that could not be obtained from structural links alone.","PeriodicalId":220482,"journal":{"name":"Int. J. Soc. Comput. Cyber Phys. Syst.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Finding the semantic-level precursors on a blog network\",\"authors\":\"Telmo Menezes, Camille Roth, Jean-Philippe Cointet\",\"doi\":\"10.1504/IJSCCPS.2011.044170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study semantic-level precedence relationships between participants in a blog network. Our methodology has two steps: a process to identify units of discussion at the semantic level and a probabilistic framework to estimate temporal relationships between blogs, in terms of the order in which they arrive at those units of discussion. We propose dyadic precursor scores that can be used to construct semantic-level precedence networks. From these scores, we derive global precursor and laggard scores. Dyadic precursor scores are compared with URL linking to show that the semantic-level temporal relationships we estimate are an indicator of influence. Global scores are compared to traditional link degree and PageRank metrics, and we uncover relationships between semantic-level temporal behaviour and popularity. We show that our method reveals information about the network that could not be obtained from structural links alone.\",\"PeriodicalId\":220482,\"journal\":{\"name\":\"Int. J. Soc. Comput. Cyber Phys. Syst.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Soc. Comput. Cyber Phys. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJSCCPS.2011.044170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Soc. Comput. Cyber Phys. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSCCPS.2011.044170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在这项工作中,我们研究了博客网络中参与者之间的语义级优先关系。我们的方法有两个步骤:一个在语义层面上识别讨论单元的过程,以及一个概率框架,根据博客到达这些讨论单元的顺序来估计博客之间的时间关系。我们提出了可用于构建语义级优先网络的二元前驱分数。从这些分数中,我们得到了全局的前驱分数和滞后分数。将二元前驱分数与URL链接进行比较,以表明我们估计的语义级时间关系是影响的一个指标。将全局得分与传统的链接度和PageRank指标进行比较,我们揭示了语义级时间行为与受欢迎程度之间的关系。我们表明,我们的方法揭示了网络的信息,这些信息不能单独从结构链接中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finding the semantic-level precursors on a blog network
In this work, we study semantic-level precedence relationships between participants in a blog network. Our methodology has two steps: a process to identify units of discussion at the semantic level and a probabilistic framework to estimate temporal relationships between blogs, in terms of the order in which they arrive at those units of discussion. We propose dyadic precursor scores that can be used to construct semantic-level precedence networks. From these scores, we derive global precursor and laggard scores. Dyadic precursor scores are compared with URL linking to show that the semantic-level temporal relationships we estimate are an indicator of influence. Global scores are compared to traditional link degree and PageRank metrics, and we uncover relationships between semantic-level temporal behaviour and popularity. We show that our method reveals information about the network that could not be obtained from structural links alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting malicious users in the social networks using machine learning approach Privacy-preserving targeted online advertising Cyber-squatting: a cyber crime more than an unethical act The troika of artificial intelligence, emotional intelligence and customer intelligence Implementation of an efficient and intelligent Indian maritime borderline alert system using IoT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1