固定宽带无线应用中MIMO-OFDM的信道估计

B. Karakaya, H. A. Çırpan, E. Panayirci
{"title":"固定宽带无线应用中MIMO-OFDM的信道估计","authors":"B. Karakaya, H. A. Çırpan, E. Panayirci","doi":"10.1109/SIU.2006.1659784","DOIUrl":null,"url":null,"abstract":"Systems employing multiple transmit and receive antennas, known as multiple input multiple output (MIMO) systems can be used with OFDM to improve the resistance to channel impairments. Thus the technologies of OFDM and MIMO are equipped in fixed wireless applications with attractive features, including high data rates and robust performance. However, since different signals are transmitted from different antennas simultaneously, the received signal is the superposition of these signals, which implies new challenges for channel estimation. In this paper we propose a time domain MMSE based channel estimation approach for MIMO-OFDM systems. The proposed approach employs a convenient representation of the discrete multipath fading channel based on the Karhunen-Loeve (KL) orthogonal expansion and finds MMSE estimates of the uncorrelated KL series expansion coefficients. Based on such an expansion, no matrix inversion is required in the proposed MMSE estimator. Also the performance of the proposed approach is studied through the evaluation of minimum Bayesian MSE","PeriodicalId":415037,"journal":{"name":"2006 IEEE 14th Signal Processing and Communications Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel Estimation for MIMO-OFDM in Fixed Broadband Wireless Applications\",\"authors\":\"B. Karakaya, H. A. Çırpan, E. Panayirci\",\"doi\":\"10.1109/SIU.2006.1659784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Systems employing multiple transmit and receive antennas, known as multiple input multiple output (MIMO) systems can be used with OFDM to improve the resistance to channel impairments. Thus the technologies of OFDM and MIMO are equipped in fixed wireless applications with attractive features, including high data rates and robust performance. However, since different signals are transmitted from different antennas simultaneously, the received signal is the superposition of these signals, which implies new challenges for channel estimation. In this paper we propose a time domain MMSE based channel estimation approach for MIMO-OFDM systems. The proposed approach employs a convenient representation of the discrete multipath fading channel based on the Karhunen-Loeve (KL) orthogonal expansion and finds MMSE estimates of the uncorrelated KL series expansion coefficients. Based on such an expansion, no matrix inversion is required in the proposed MMSE estimator. Also the performance of the proposed approach is studied through the evaluation of minimum Bayesian MSE\",\"PeriodicalId\":415037,\"journal\":{\"name\":\"2006 IEEE 14th Signal Processing and Communications Applications\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE 14th Signal Processing and Communications Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2006.1659784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 14th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2006.1659784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用多个发射和接收天线的系统,称为多输入多输出(MIMO)系统,可以与OFDM一起使用,以提高对信道损伤的抵抗力。因此,OFDM和MIMO技术在固定无线应用中具有吸引人的特点,包括高数据速率和强大的性能。然而,由于不同的信号同时从不同的天线发射,接收到的信号是这些信号的叠加,这给信道估计带来了新的挑战。本文提出了一种基于时域MMSE的MIMO-OFDM系统信道估计方法。该方法利用Karhunen-Loeve (KL)正交展开对离散多径衰落信道进行方便的表示,并求出不相关KL级数展开系数的MMSE估计。基于这种展开,所提出的MMSE估计不需要矩阵反演。通过对最小贝叶斯均方差的评估,研究了该方法的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Channel Estimation for MIMO-OFDM in Fixed Broadband Wireless Applications
Systems employing multiple transmit and receive antennas, known as multiple input multiple output (MIMO) systems can be used with OFDM to improve the resistance to channel impairments. Thus the technologies of OFDM and MIMO are equipped in fixed wireless applications with attractive features, including high data rates and robust performance. However, since different signals are transmitted from different antennas simultaneously, the received signal is the superposition of these signals, which implies new challenges for channel estimation. In this paper we propose a time domain MMSE based channel estimation approach for MIMO-OFDM systems. The proposed approach employs a convenient representation of the discrete multipath fading channel based on the Karhunen-Loeve (KL) orthogonal expansion and finds MMSE estimates of the uncorrelated KL series expansion coefficients. Based on such an expansion, no matrix inversion is required in the proposed MMSE estimator. Also the performance of the proposed approach is studied through the evaluation of minimum Bayesian MSE
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Peer-to-Peer Multipoint Video Conferencing Using Layered Video Determination of Product Surface Quality Watermarking Tools for Turkish Texts By Using Darlington Topology Improvement of In-Band Gain for the Log Domain Filters Dual Wideband Antenna Analysis for Linear FMCW Radar Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1