支持CNN加速器高效数据重组的张量虚拟化技术

Donghyun Kang, S. Ha
{"title":"支持CNN加速器高效数据重组的张量虚拟化技术","authors":"Donghyun Kang, S. Ha","doi":"10.1109/DAC18072.2020.9218726","DOIUrl":null,"url":null,"abstract":"There is a growing need for data reorganization in recent neural networks for various applications such as Generative Adversarial Networks(GANs) that use transposed convolution and U-Net that requires upsampling. We propose a novel technique, called tensor virtualization technique, to perform data reorganization efficiently with a minimal hardware addition for adder-tree based CNN accelerators. In the proposed technique, a data reorganization request is specified with a few parameters and data reorganization is performed in the virtual space without overhead in the physical memory. It allows existing adder-tree-based CNN accelerators to accelerate a wide range of neural networks that require data reorganization, including U-Net, DCGAN, and SRGAN.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensor Virtualization Technique to Support Efficient Data Reorganization for CNN Accelerators\",\"authors\":\"Donghyun Kang, S. Ha\",\"doi\":\"10.1109/DAC18072.2020.9218726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a growing need for data reorganization in recent neural networks for various applications such as Generative Adversarial Networks(GANs) that use transposed convolution and U-Net that requires upsampling. We propose a novel technique, called tensor virtualization technique, to perform data reorganization efficiently with a minimal hardware addition for adder-tree based CNN accelerators. In the proposed technique, a data reorganization request is specified with a few parameters and data reorganization is performed in the virtual space without overhead in the physical memory. It allows existing adder-tree-based CNN accelerators to accelerate a wide range of neural networks that require data reorganization, including U-Net, DCGAN, and SRGAN.\",\"PeriodicalId\":428807,\"journal\":{\"name\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAC18072.2020.9218726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在最近的各种应用中,神经网络对数据重组的需求越来越大,例如使用转置卷积的生成对抗网络(GANs)和需要上采样的U-Net。我们提出了一种新的技术,称为张量虚拟化技术,以最小的硬件添加来有效地执行基于加法器树的CNN加速器的数据重组。在该技术中,通过少量参数指定数据重组请求,并在虚拟空间中执行数据重组,而不会增加物理内存的开销。它允许现有的基于加法器树的CNN加速器加速各种需要数据重组的神经网络,包括U-Net、DCGAN和SRGAN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tensor Virtualization Technique to Support Efficient Data Reorganization for CNN Accelerators
There is a growing need for data reorganization in recent neural networks for various applications such as Generative Adversarial Networks(GANs) that use transposed convolution and U-Net that requires upsampling. We propose a novel technique, called tensor virtualization technique, to perform data reorganization efficiently with a minimal hardware addition for adder-tree based CNN accelerators. In the proposed technique, a data reorganization request is specified with a few parameters and data reorganization is performed in the virtual space without overhead in the physical memory. It allows existing adder-tree-based CNN accelerators to accelerate a wide range of neural networks that require data reorganization, including U-Net, DCGAN, and SRGAN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FCNNLib: An Efficient and Flexible Convolution Algorithm Library on FPGAs AXI HyperConnect: A Predictable, Hypervisor-level Interconnect for Hardware Accelerators in FPGA SoC Pythia: Intellectual Property Verification in Zero-Knowledge Reuse-trap: Re-purposing Cache Reuse Distance to Defend against Side Channel Leakage Navigator: Dynamic Multi-kernel Scheduling to Improve GPU Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1