{"title":"用长期经济和金融变量建模和预测商品市场波动","authors":"D. K. Nguyen, T. Walther","doi":"10.2139/ssrn.3294967","DOIUrl":null,"url":null,"abstract":"This paper investigates the time-varying volatility patterns of some major commodities as well as the potential factors that drive their long-term volatility component. For this purpose, we make use of a recently proposed GARCH-MIDAS approach which typically allows us to examine the role of economic and financial variables of different frequencies. Using commodity futures for crude oil (WTI and Brent), gold, silver and platinum, our results show the necessity of disentangling the short- and long-term components in modeling and forecasting commodity volatility. They also indicate that the long-term volatility of most commodity futures is significantly driven by the level of the general real economic activity as well as the changes in consumer sentiment, industrial production, and economic policy uncertainty. However, the forecasting results are not alike across commodity futures as no single model fits all commodities.","PeriodicalId":448147,"journal":{"name":"EnergyRN: Other Energy Finance","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Modeling and Forecasting Commodity Market Volatility with Long-term Economic and Financial Variables\",\"authors\":\"D. K. Nguyen, T. Walther\",\"doi\":\"10.2139/ssrn.3294967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the time-varying volatility patterns of some major commodities as well as the potential factors that drive their long-term volatility component. For this purpose, we make use of a recently proposed GARCH-MIDAS approach which typically allows us to examine the role of economic and financial variables of different frequencies. Using commodity futures for crude oil (WTI and Brent), gold, silver and platinum, our results show the necessity of disentangling the short- and long-term components in modeling and forecasting commodity volatility. They also indicate that the long-term volatility of most commodity futures is significantly driven by the level of the general real economic activity as well as the changes in consumer sentiment, industrial production, and economic policy uncertainty. However, the forecasting results are not alike across commodity futures as no single model fits all commodities.\",\"PeriodicalId\":448147,\"journal\":{\"name\":\"EnergyRN: Other Energy Finance\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EnergyRN: Other Energy Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3294967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyRN: Other Energy Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3294967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling and Forecasting Commodity Market Volatility with Long-term Economic and Financial Variables
This paper investigates the time-varying volatility patterns of some major commodities as well as the potential factors that drive their long-term volatility component. For this purpose, we make use of a recently proposed GARCH-MIDAS approach which typically allows us to examine the role of economic and financial variables of different frequencies. Using commodity futures for crude oil (WTI and Brent), gold, silver and platinum, our results show the necessity of disentangling the short- and long-term components in modeling and forecasting commodity volatility. They also indicate that the long-term volatility of most commodity futures is significantly driven by the level of the general real economic activity as well as the changes in consumer sentiment, industrial production, and economic policy uncertainty. However, the forecasting results are not alike across commodity futures as no single model fits all commodities.