基于GLCM特征和粒子群训练神经网络的木材缺陷分类

Rehan Qayyum, K. Kamal, T. Zafar, S. Mathavan
{"title":"基于GLCM特征和粒子群训练神经网络的木材缺陷分类","authors":"Rehan Qayyum, K. Kamal, T. Zafar, S. Mathavan","doi":"10.1109/IConAC.2016.7604931","DOIUrl":null,"url":null,"abstract":"Machine vision based inspection system are in great focus nowadays for quality control applications. The paper presents a novel approach for classification of wood knot defects for an automated inspection. The proposed technique utilizes gray level co-occurrence matrix based features and a particle swarm optimization trained feedforward neural network. It takes contrast, correlation, energy, homogeneity as input parameters to a feedforward neural network to predict wood defects. PSO is used as a learning algorithm. The MSE for training data is found to be 0.3483 and 78.26% accuracy is achieved for testing data. The proposed technique shows promising results to classify wood defects using a PSO trained neural network.","PeriodicalId":375052,"journal":{"name":"2016 22nd International Conference on Automation and Computing (ICAC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Wood defects classification using GLCM based features and PSO trained neural network\",\"authors\":\"Rehan Qayyum, K. Kamal, T. Zafar, S. Mathavan\",\"doi\":\"10.1109/IConAC.2016.7604931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine vision based inspection system are in great focus nowadays for quality control applications. The paper presents a novel approach for classification of wood knot defects for an automated inspection. The proposed technique utilizes gray level co-occurrence matrix based features and a particle swarm optimization trained feedforward neural network. It takes contrast, correlation, energy, homogeneity as input parameters to a feedforward neural network to predict wood defects. PSO is used as a learning algorithm. The MSE for training data is found to be 0.3483 and 78.26% accuracy is achieved for testing data. The proposed technique shows promising results to classify wood defects using a PSO trained neural network.\",\"PeriodicalId\":375052,\"journal\":{\"name\":\"2016 22nd International Conference on Automation and Computing (ICAC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 22nd International Conference on Automation and Computing (ICAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IConAC.2016.7604931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConAC.2016.7604931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

基于机器视觉的检测系统是当今质量控制应用的热点。提出了一种用于自动检测的木结缺陷分类的新方法。该技术利用基于灰度共生矩阵的特征和粒子群优化训练的前馈神经网络。该方法以对比度、相关性、能量、均匀性等参数作为前馈神经网络的输入参数,对木材缺陷进行预测。粒子群算法是一种学习算法。训练数据的MSE为0.3483,测试数据的准确率为78.26%。利用粒子群训练的神经网络对木材缺陷进行分类,显示出良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wood defects classification using GLCM based features and PSO trained neural network
Machine vision based inspection system are in great focus nowadays for quality control applications. The paper presents a novel approach for classification of wood knot defects for an automated inspection. The proposed technique utilizes gray level co-occurrence matrix based features and a particle swarm optimization trained feedforward neural network. It takes contrast, correlation, energy, homogeneity as input parameters to a feedforward neural network to predict wood defects. PSO is used as a learning algorithm. The MSE for training data is found to be 0.3483 and 78.26% accuracy is achieved for testing data. The proposed technique shows promising results to classify wood defects using a PSO trained neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative study of Partial Discharge emulators for the calibration of Free-Space radiometric measurements Knowledge representation of large medical data using XML An investigation of electrical motor parameters in a sensorless variable speed drive for machine fault diagnosis A novel fault-tolerant control strategy for Near Space Hypersonic Vehicles via Least Squares Support Vector Machine and Backstepping method Automatic text summarization using fuzzy inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1