情感分析中隐马尔可夫模型的系统综述

Victor Odumuyiwa, Ukachi Osisiogu
{"title":"情感分析中隐马尔可夫模型的系统综述","authors":"Victor Odumuyiwa, Ukachi Osisiogu","doi":"10.1109/ICECCO48375.2019.9043297","DOIUrl":null,"url":null,"abstract":"This paper gives a review of the literature on the application of Hidden Markov Models in the field of sentiment analysis. This is done in relation to a research project on semantic representation and the use of probabilistic graphical models for the determination of sentiment in textual data. Relevant articles have been analyzed that correspond mainly to the certain variations of the implementation of HMM and a variety of use cases for the purpose of sentiment classification. Finally, this review presents the grounds for future works that seek to develop techniques for semantic text representations implemented with probabilistic graphical models (Hidden Markov Models) or that through a combination scheme allow for superior classification performance.","PeriodicalId":166322,"journal":{"name":"2019 15th International Conference on Electronics, Computer and Computation (ICECCO)","volume":"49 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Systematic Review on Hidden Markov Models for Sentiment Analysis\",\"authors\":\"Victor Odumuyiwa, Ukachi Osisiogu\",\"doi\":\"10.1109/ICECCO48375.2019.9043297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper gives a review of the literature on the application of Hidden Markov Models in the field of sentiment analysis. This is done in relation to a research project on semantic representation and the use of probabilistic graphical models for the determination of sentiment in textual data. Relevant articles have been analyzed that correspond mainly to the certain variations of the implementation of HMM and a variety of use cases for the purpose of sentiment classification. Finally, this review presents the grounds for future works that seek to develop techniques for semantic text representations implemented with probabilistic graphical models (Hidden Markov Models) or that through a combination scheme allow for superior classification performance.\",\"PeriodicalId\":166322,\"journal\":{\"name\":\"2019 15th International Conference on Electronics, Computer and Computation (ICECCO)\",\"volume\":\"49 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th International Conference on Electronics, Computer and Computation (ICECCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECCO48375.2019.9043297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Electronics, Computer and Computation (ICECCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCO48375.2019.9043297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对隐马尔可夫模型在情感分析领域的应用进行了综述。这与一个关于语义表示和使用概率图形模型来确定文本数据中的情感的研究项目有关。已经分析了相关文章,这些文章主要对应于HMM实现的某些变化以及用于情感分类的各种用例。最后,这篇综述为未来的工作提供了基础,这些工作旨在开发使用概率图形模型(隐马尔可夫模型)实现的语义文本表示技术,或者通过组合方案实现更好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Systematic Review on Hidden Markov Models for Sentiment Analysis
This paper gives a review of the literature on the application of Hidden Markov Models in the field of sentiment analysis. This is done in relation to a research project on semantic representation and the use of probabilistic graphical models for the determination of sentiment in textual data. Relevant articles have been analyzed that correspond mainly to the certain variations of the implementation of HMM and a variety of use cases for the purpose of sentiment classification. Finally, this review presents the grounds for future works that seek to develop techniques for semantic text representations implemented with probabilistic graphical models (Hidden Markov Models) or that through a combination scheme allow for superior classification performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Investigation into Peer-to-Peer Network Security Using Wireshark Greenhouse Monitoring and Control System with an Arduino System Transfer Learning Based Histopathologic Image Classification for Burns Recognition Modelling And Realization of a Compact CPW Transmission Lines Using 3D Mmics Technology in ADS Momentum Review of Advances in Machine Learning Based Protein Secondary Structure Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1