一个轻量级的自调优本体映射系统

Zhen Zhen, Junyi Shen, Jinwei Zhao, J. Qian
{"title":"一个轻量级的自调优本体映射系统","authors":"Zhen Zhen, Junyi Shen, Jinwei Zhao, J. Qian","doi":"10.1109/WI-IAT.2010.173","DOIUrl":null,"url":null,"abstract":"We argue that it is more practical to address the ontology mapping self-tuning problem in a whole system context instead of in a single matcher context. In this paper we introduce RMOMS, a Reference Model for Ontology Mapping Systems, consisting of six parts, the Preprocessor, the Dispatcher, the Matcher(s), the Aggregator, the Pruner, and the User Interface, with which to disassemble the self-tuning problem into more feasible units. We propose Maximum Weight Bipartite Graph Matching method for self-tuning matchers and Stable Match method for self-tuning aggregator, and test them in LiSTOMS, a light-weighted prototype sample of RMOMS. With comparison with some notable systems, LiSTOMS shows leading recall rate and competing precision rate.","PeriodicalId":197966,"journal":{"name":"Web Intelligence/IAT Workshops","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"LiSTOMS: A Light-Weighted Self-Tuning Ontology Mapping System\",\"authors\":\"Zhen Zhen, Junyi Shen, Jinwei Zhao, J. Qian\",\"doi\":\"10.1109/WI-IAT.2010.173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We argue that it is more practical to address the ontology mapping self-tuning problem in a whole system context instead of in a single matcher context. In this paper we introduce RMOMS, a Reference Model for Ontology Mapping Systems, consisting of six parts, the Preprocessor, the Dispatcher, the Matcher(s), the Aggregator, the Pruner, and the User Interface, with which to disassemble the self-tuning problem into more feasible units. We propose Maximum Weight Bipartite Graph Matching method for self-tuning matchers and Stable Match method for self-tuning aggregator, and test them in LiSTOMS, a light-weighted prototype sample of RMOMS. With comparison with some notable systems, LiSTOMS shows leading recall rate and competing precision rate.\",\"PeriodicalId\":197966,\"journal\":{\"name\":\"Web Intelligence/IAT Workshops\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intelligence/IAT Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2010.173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intelligence/IAT Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们认为在整个系统上下文中解决本体映射自调优问题比在单个匹配器上下文中解决本体映射自调优问题更实际。本文介绍了本体映射系统的参考模型rmom,该模型由预处理器、调度器、匹配器、聚合器、修剪器和用户界面六部分组成,利用rmom可以将自调优问题分解成更可行的单元。我们提出了自调优匹配器的最大权值二部图匹配方法和自调优聚合器的稳定匹配方法,并在rmom的轻量级原型样本LiSTOMS中进行了测试。通过与一些著名系统的比较,listams显示出领先的召回率和竞争的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LiSTOMS: A Light-Weighted Self-Tuning Ontology Mapping System
We argue that it is more practical to address the ontology mapping self-tuning problem in a whole system context instead of in a single matcher context. In this paper we introduce RMOMS, a Reference Model for Ontology Mapping Systems, consisting of six parts, the Preprocessor, the Dispatcher, the Matcher(s), the Aggregator, the Pruner, and the User Interface, with which to disassemble the self-tuning problem into more feasible units. We propose Maximum Weight Bipartite Graph Matching method for self-tuning matchers and Stable Match method for self-tuning aggregator, and test them in LiSTOMS, a light-weighted prototype sample of RMOMS. With comparison with some notable systems, LiSTOMS shows leading recall rate and competing precision rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracing Strength of Relationships in Social Networks LiSTOMS: A Light-Weighted Self-Tuning Ontology Mapping System Careful Seeding Based on Independent Component Analysis for k-Means Clustering Content Propagation Analysis of E-mail Communications Towards Privacy Preserving Information Retrieval through Semantic Microaggregation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1