多选择多维背包问题的启发式算法

Md Iftakharul Islam, M. Akbar
{"title":"多选择多维背包问题的启发式算法","authors":"Md Iftakharul Islam, M. Akbar","doi":"10.1109/ICCIT.2009.5407147","DOIUrl":null,"url":null,"abstract":"This paper presents two heuristic algorithms of the MMKP (a variant of 0–1 knapsack problem) for cluster computing. We present an architecture of a cluster, such that algorithm requires small message passing. The algorithms divide the problem among computational nodes. Each node solves its sub problem using a sequential heuristic. This naïve divide and conquer approach cannot achieve good revenue. The revenue is the value achieved by the solution of MMKP. To improve the revenue, it accumulates the unused resources from every node, and assigns to the node, which gives maximum revenue over all nodes. This is the residue exploitation (RE) strategy. The solution quality can be improved by a novel resource-division policy rather than equal division. The policy divides the resource among all nodes such that total revenue increases. A sequential heuristic calculates the solution incrementally for different amounts of resource capacity, and the best combination is taken as the solution. This is the resource adjustment (RA) strategy. We experiment the algorithm using MPI (Message Passing Interface). The proposed algorithms show encouraging results.","PeriodicalId":443258,"journal":{"name":"2009 12th International Conference on Computers and Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Heuristic algorithm of the multiple-choice multidimensional knapsack problem (MMKP) for cluster computing\",\"authors\":\"Md Iftakharul Islam, M. Akbar\",\"doi\":\"10.1109/ICCIT.2009.5407147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents two heuristic algorithms of the MMKP (a variant of 0–1 knapsack problem) for cluster computing. We present an architecture of a cluster, such that algorithm requires small message passing. The algorithms divide the problem among computational nodes. Each node solves its sub problem using a sequential heuristic. This naïve divide and conquer approach cannot achieve good revenue. The revenue is the value achieved by the solution of MMKP. To improve the revenue, it accumulates the unused resources from every node, and assigns to the node, which gives maximum revenue over all nodes. This is the residue exploitation (RE) strategy. The solution quality can be improved by a novel resource-division policy rather than equal division. The policy divides the resource among all nodes such that total revenue increases. A sequential heuristic calculates the solution incrementally for different amounts of resource capacity, and the best combination is taken as the solution. This is the resource adjustment (RA) strategy. We experiment the algorithm using MPI (Message Passing Interface). The proposed algorithms show encouraging results.\",\"PeriodicalId\":443258,\"journal\":{\"name\":\"2009 12th International Conference on Computers and Information Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 12th International Conference on Computers and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIT.2009.5407147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 12th International Conference on Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2009.5407147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了用于集群计算的MMKP(0-1背包问题的一种变体)的两种启发式算法。我们提出了一个集群的架构,使得算法需要小的消息传递。算法在计算节点之间划分问题。每个节点使用顺序启发式方法解决其子问题。这种naïve分而治之的方法无法获得良好的收益。收益是MMKP解决方案所获得的价值。为了提高收益,它从每个节点上积累未使用的资源,并分配给该节点,从而使所有节点的收益最大化。这就是残留物开发(RE)策略。通过一种新的资源分配策略而不是平等分配,可以提高解的质量。该策略将资源分配给所有节点,使总收入增加。顺序启发式算法对不同的资源容量增量计算解决方案,并将最佳组合作为解决方案。这就是资源调整(RA)策略。我们使用MPI (Message Passing Interface)对该算法进行了实验。所提出的算法取得了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heuristic algorithm of the multiple-choice multidimensional knapsack problem (MMKP) for cluster computing
This paper presents two heuristic algorithms of the MMKP (a variant of 0–1 knapsack problem) for cluster computing. We present an architecture of a cluster, such that algorithm requires small message passing. The algorithms divide the problem among computational nodes. Each node solves its sub problem using a sequential heuristic. This naïve divide and conquer approach cannot achieve good revenue. The revenue is the value achieved by the solution of MMKP. To improve the revenue, it accumulates the unused resources from every node, and assigns to the node, which gives maximum revenue over all nodes. This is the residue exploitation (RE) strategy. The solution quality can be improved by a novel resource-division policy rather than equal division. The policy divides the resource among all nodes such that total revenue increases. A sequential heuristic calculates the solution incrementally for different amounts of resource capacity, and the best combination is taken as the solution. This is the resource adjustment (RA) strategy. We experiment the algorithm using MPI (Message Passing Interface). The proposed algorithms show encouraging results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content clustering of Computer Mediated Courseware using data mining technique An audible Bangla text-entry method in Mobile phones with intelligent keypad Design of meandering probe fed microstrip patch antenna for wireless communication system Can Information Retrieval techniques automatic assessment challenges? Logical clock based Last Update Consistency model for Distributed Shared Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1