Neon:单芯片3D工作站图形加速器

Joel McCormack, Bob McNamara, C. Gianos, L. Seiler, N. Jouppi, Kenneth W. Correll
{"title":"Neon:单芯片3D工作站图形加速器","authors":"Joel McCormack, Bob McNamara, C. Gianos, L. Seiler, N. Jouppi, Kenneth W. Correll","doi":"10.1145/285305.285320","DOIUrl":null,"url":null,"abstract":"High-performance 3D graphics accelerators traditionally require multiple chips on multiple boards, including geometry, rasterizing, pixel processing, and texture mapping chips. These designs are often scalable: they can increase performance by using more chips. Scalability has obvious costs: a minimal configuration needs several chips, and some configurations must replicate texture maps. A less obvious cost is the almost irresistible temptation to replicate chips to increase performance, rather than to design individual chips for higher performance in the first place. In contrast, Neon is a single chip that performs like a multichip design. Neon accelerates OpenGL [19] 3D rendering, as well as X11 [20] and Windows/NT 2D rendering. Since our pin budget limited peak memory bandwidth, we designed Neon from the memory system upward in order to reduce bandwidth requirements. Neon has no special-purpose memories; its eight independent 32-bit memory controllers can access color buffers, Z depth buffers, stencil buffers, and texture data. To fit our gate budget, we shared logic among different operations with similar implementation requirements, and left floating point calculations to Digital's Alpha CPUs. Neon's performance is between HP's Visualize fx4 and fx6, and is well above SGI''s MXE for most operations. Neon-based boards cost much less than these competitors, due to a small part count and use of commodity SDRAMs.","PeriodicalId":298241,"journal":{"name":"Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Neon: a single-chip 3D workstation graphics accelerator\",\"authors\":\"Joel McCormack, Bob McNamara, C. Gianos, L. Seiler, N. Jouppi, Kenneth W. Correll\",\"doi\":\"10.1145/285305.285320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-performance 3D graphics accelerators traditionally require multiple chips on multiple boards, including geometry, rasterizing, pixel processing, and texture mapping chips. These designs are often scalable: they can increase performance by using more chips. Scalability has obvious costs: a minimal configuration needs several chips, and some configurations must replicate texture maps. A less obvious cost is the almost irresistible temptation to replicate chips to increase performance, rather than to design individual chips for higher performance in the first place. In contrast, Neon is a single chip that performs like a multichip design. Neon accelerates OpenGL [19] 3D rendering, as well as X11 [20] and Windows/NT 2D rendering. Since our pin budget limited peak memory bandwidth, we designed Neon from the memory system upward in order to reduce bandwidth requirements. Neon has no special-purpose memories; its eight independent 32-bit memory controllers can access color buffers, Z depth buffers, stencil buffers, and texture data. To fit our gate budget, we shared logic among different operations with similar implementation requirements, and left floating point calculations to Digital's Alpha CPUs. Neon's performance is between HP's Visualize fx4 and fx6, and is well above SGI''s MXE for most operations. Neon-based boards cost much less than these competitors, due to a small part count and use of commodity SDRAMs.\",\"PeriodicalId\":298241,\"journal\":{\"name\":\"Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/285305.285320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/285305.285320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

传统上,高性能3D图形加速器需要在多个电路板上安装多个芯片,包括几何、光栅化、像素处理和纹理映射芯片。这些设计通常是可扩展的:它们可以通过使用更多的芯片来提高性能。可伸缩性有明显的代价:最小的配置需要几个芯片,一些配置必须复制纹理贴图。一个不太明显的成本是复制芯片以提高性能,而不是首先设计单个芯片以提高性能,这几乎是不可抗拒的诱惑。相比之下,Neon是一个单芯片,它的表现就像一个多芯片设计。Neon可以加速OpenGL [19] 3D渲染,以及X11[20]和Windows/NT 2D渲染。由于我们的引脚预算限制了峰值内存带宽,我们从内存系统向上设计Neon以减少带宽需求。氖没有特殊用途的记忆;它的8个独立的32位内存控制器可以访问颜色缓冲区、Z深度缓冲区、模板缓冲区和纹理数据。为了适应我们的门预算,我们在具有类似实现要求的不同操作之间共享逻辑,并将浮点计算留给Digital的Alpha cpu。Neon的性能介于惠普的visualfx4和fx6之间,在大多数操作中远高于SGI的MXE。霓虹灯板的成本比这些竞争对手低得多,因为零件数量少,而且使用了商品dram。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neon: a single-chip 3D workstation graphics accelerator
High-performance 3D graphics accelerators traditionally require multiple chips on multiple boards, including geometry, rasterizing, pixel processing, and texture mapping chips. These designs are often scalable: they can increase performance by using more chips. Scalability has obvious costs: a minimal configuration needs several chips, and some configurations must replicate texture maps. A less obvious cost is the almost irresistible temptation to replicate chips to increase performance, rather than to design individual chips for higher performance in the first place. In contrast, Neon is a single chip that performs like a multichip design. Neon accelerates OpenGL [19] 3D rendering, as well as X11 [20] and Windows/NT 2D rendering. Since our pin budget limited peak memory bandwidth, we designed Neon from the memory system upward in order to reduce bandwidth requirements. Neon has no special-purpose memories; its eight independent 32-bit memory controllers can access color buffers, Z depth buffers, stencil buffers, and texture data. To fit our gate budget, we shared logic among different operations with similar implementation requirements, and left floating point calculations to Digital's Alpha CPUs. Neon's performance is between HP's Visualize fx4 and fx6, and is well above SGI''s MXE for most operations. Neon-based boards cost much less than these competitors, due to a small part count and use of commodity SDRAMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tiled polygon traversal using half-plane edge functions Hybrid sort-first and sort-last parallel rendering with a cluster of PCs Towards interactive bump mapping with anisotropic shift-variant BRDFs The RACE II engine for real-time volume rendering Single-pass full-screen hardware accelerated antialiasing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1