图像分类中深度学习混合技术的探索

M. Suganthi, J. Sathiaseelan
{"title":"图像分类中深度学习混合技术的探索","authors":"M. Suganthi, J. Sathiaseelan","doi":"10.1109/ICCCSP49186.2020.9315270","DOIUrl":null,"url":null,"abstract":"Image Mining is an extension of data mining, which is concerned with extracting beneficial information from image data. Images are classified based on texture, size, color and morphology. Neural Networks, ImageNet, VGG16, AlexNet are renowned image recognition techniques used to identify various agriculture, medical, aerial images and so on. Convolution neural network (CNN) is a Machine learning method used to classify the images which are popularly known for robust feature extraction and information mining. A comparative study of seven CNN based hybrid image classification techniques namely CNN-ELM, CNN-KNN, CNN-GA, MLP-CNN, CNN-SVM, CNN-RNN, CNN-LSTM has been done to determine their accuracy.","PeriodicalId":310458,"journal":{"name":"2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Exploratory of Hybrid Techniques on Deep Learning for Image Classification\",\"authors\":\"M. Suganthi, J. Sathiaseelan\",\"doi\":\"10.1109/ICCCSP49186.2020.9315270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image Mining is an extension of data mining, which is concerned with extracting beneficial information from image data. Images are classified based on texture, size, color and morphology. Neural Networks, ImageNet, VGG16, AlexNet are renowned image recognition techniques used to identify various agriculture, medical, aerial images and so on. Convolution neural network (CNN) is a Machine learning method used to classify the images which are popularly known for robust feature extraction and information mining. A comparative study of seven CNN based hybrid image classification techniques namely CNN-ELM, CNN-KNN, CNN-GA, MLP-CNN, CNN-SVM, CNN-RNN, CNN-LSTM has been done to determine their accuracy.\",\"PeriodicalId\":310458,\"journal\":{\"name\":\"2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCSP49186.2020.9315270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCSP49186.2020.9315270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

图像挖掘是数据挖掘的一种扩展,涉及从图像数据中提取有益信息。图像根据纹理、大小、颜色和形态进行分类。神经网络、ImageNet、VGG16、AlexNet是著名的图像识别技术,用于识别各种农业、医疗、航空图像等。卷积神经网络(CNN)是一种用于图像分类的机器学习方法,以鲁棒特征提取和信息挖掘而闻名。对7种基于CNN的混合图像分类技术CNN- elm、CNN- knn、CNN- ga、MLP-CNN、CNN- svm、CNN- rnn、CNN- lstm进行了对比研究,确定了它们的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Exploratory of Hybrid Techniques on Deep Learning for Image Classification
Image Mining is an extension of data mining, which is concerned with extracting beneficial information from image data. Images are classified based on texture, size, color and morphology. Neural Networks, ImageNet, VGG16, AlexNet are renowned image recognition techniques used to identify various agriculture, medical, aerial images and so on. Convolution neural network (CNN) is a Machine learning method used to classify the images which are popularly known for robust feature extraction and information mining. A comparative study of seven CNN based hybrid image classification techniques namely CNN-ELM, CNN-KNN, CNN-GA, MLP-CNN, CNN-SVM, CNN-RNN, CNN-LSTM has been done to determine their accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Agritech Farming Using Staging Level Blockchaining and Transaction Access Control Using Micro QR Code Improving Facial Recognition of FaceNet in a small dataset using DeepFakes Wireless Sensor Network Based Structural Health Monitoring for Multistory Building Third Vision For Women Using Deep Learning Techniques Dynamic Facility Layout Problem Using Chemical Reaction Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1