应用扩展卡尔曼滤波实现两轮机器人非线性最优控制

Surapong Kokkrathoke, Xu Xu
{"title":"应用扩展卡尔曼滤波实现两轮机器人非线性最优控制","authors":"Surapong Kokkrathoke, Xu Xu","doi":"10.1109/I2CACIS52118.2021.9495859","DOIUrl":null,"url":null,"abstract":"This paper presents a nonlinear freezing optimal control (NFOC) technique combined with an extended Kalman filter (EKF) for stabilising a two-wheel robot (TWR). The balancing LEGO EV3 Robot is utilised as a prototype for simulation and practical implementation to test the performance of the NFOC with EKF, compared against the well-known linear optimal control, i.e., the linear quadratic regulator (LQR) and the stand-alone NFOC. The stabilisation of the TWR system when starting from various ranges of initial pitch angles with different types of controllers are investigated and discussed. The MATLAB simulation result demonstrates wider operation ranges from both nonlinear optimal controllers over the linear one when simulated with a high-performance motor. In the case of implementation, the two nonlinear methods also displayed slightly more comprehensive initial pitch angle ranges than the linear control. Significantly, the precision of state variable estimation from the EKF technique removes the signal drift problem in the gyro sensor, which is used to measure the pitch angle of the TWR. The effectiveness of the NFOC controller combined with EKF is demonstrated by results from MATLAB simulation and implementation on the LEGO TWR.","PeriodicalId":210770,"journal":{"name":"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of Nonlinear Optimal Control of Two-wheel Robot with Extended Kalman Filter\",\"authors\":\"Surapong Kokkrathoke, Xu Xu\",\"doi\":\"10.1109/I2CACIS52118.2021.9495859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a nonlinear freezing optimal control (NFOC) technique combined with an extended Kalman filter (EKF) for stabilising a two-wheel robot (TWR). The balancing LEGO EV3 Robot is utilised as a prototype for simulation and practical implementation to test the performance of the NFOC with EKF, compared against the well-known linear optimal control, i.e., the linear quadratic regulator (LQR) and the stand-alone NFOC. The stabilisation of the TWR system when starting from various ranges of initial pitch angles with different types of controllers are investigated and discussed. The MATLAB simulation result demonstrates wider operation ranges from both nonlinear optimal controllers over the linear one when simulated with a high-performance motor. In the case of implementation, the two nonlinear methods also displayed slightly more comprehensive initial pitch angle ranges than the linear control. Significantly, the precision of state variable estimation from the EKF technique removes the signal drift problem in the gyro sensor, which is used to measure the pitch angle of the TWR. The effectiveness of the NFOC controller combined with EKF is demonstrated by results from MATLAB simulation and implementation on the LEGO TWR.\",\"PeriodicalId\":210770,\"journal\":{\"name\":\"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2CACIS52118.2021.9495859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CACIS52118.2021.9495859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种结合扩展卡尔曼滤波的非线性冻结最优控制(NFOC)技术来实现两轮机器人的稳定。利用平衡LEGO EV3机器人作为原型进行仿真和实际实现,以测试具有EKF的NFOC的性能,并与众所周知的线性最优控制,即线性二次型调节器(LQR)和独立的NFOC进行比较。研究和讨论了采用不同类型控制器从不同初始俯仰角范围出发时TWR系统的稳定性。MATLAB仿真结果表明,当用高性能电机进行仿真时,非线性最优控制器比线性最优控制器的工作范围更广。在实现的情况下,两种非线性方法也显示出比线性控制更全面的初始俯仰角范围。重要的是,EKF技术的状态变量估计精度消除了陀螺传感器的信号漂移问题,用于测量TWR的俯仰角。通过MATLAB仿真和在LEGO TWR上的实现,验证了NFOC控制器结合EKF的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of Nonlinear Optimal Control of Two-wheel Robot with Extended Kalman Filter
This paper presents a nonlinear freezing optimal control (NFOC) technique combined with an extended Kalman filter (EKF) for stabilising a two-wheel robot (TWR). The balancing LEGO EV3 Robot is utilised as a prototype for simulation and practical implementation to test the performance of the NFOC with EKF, compared against the well-known linear optimal control, i.e., the linear quadratic regulator (LQR) and the stand-alone NFOC. The stabilisation of the TWR system when starting from various ranges of initial pitch angles with different types of controllers are investigated and discussed. The MATLAB simulation result demonstrates wider operation ranges from both nonlinear optimal controllers over the linear one when simulated with a high-performance motor. In the case of implementation, the two nonlinear methods also displayed slightly more comprehensive initial pitch angle ranges than the linear control. Significantly, the precision of state variable estimation from the EKF technique removes the signal drift problem in the gyro sensor, which is used to measure the pitch angle of the TWR. The effectiveness of the NFOC controller combined with EKF is demonstrated by results from MATLAB simulation and implementation on the LEGO TWR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Linear Analytical Mathematical Modelling of a Hybrid Fixed-Wing Unmanned Aerial Vehicle in Pusher Configuration Efficacy of Heterogeneous Ensemble Assisted Machine Learning Model for Binary and Multi-Class Network Intrusion Detection Arrhythmia Detection using Electrocardiogram and Phonocardiogram Pattern using Integrated Signal Processing Algorithms with the Aid of Convolutional Neural Networks Reduced Computational Burden Model Predictive Current Control of Asymmetric Stacked Multi-Level Inverter Based STATCOM Analysis of Kaffir Lime Oil Chemical Compounds by Gas Chromatography-Mass Spectrometry (GC-MS) and Z-Score Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1