{"title":"使用隐马尔可夫模型从机器打印文本中分离手写材料","authors":"J. Guo, Matthew Y. Ma","doi":"10.1109/ICDAR.2001.953828","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of separating handwritten annotations from machine-printed text within a document. We present an algorithm that is based on the theory of hidden Markov models (HMMs) to distinguish between machine-printed and handwritten materials. No OCR results are required prior to or during the process, and the classification is performed at the word level. Handwritten annotations are not limited to marginal areas, as the approach can deal with document images having handwritten annotations overlaid on machine-printed text and it has been shown to be promising in our experiments. Experimental results show that the proposed method can achieve 72.19% recall for fully extracted handwritten words and 90.37% for partially extracted words. The precision of extracting handwritten words has reached 92.86%.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":"{\"title\":\"Separating handwritten material from machine printed text using hidden Markov models\",\"authors\":\"J. Guo, Matthew Y. Ma\",\"doi\":\"10.1109/ICDAR.2001.953828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of separating handwritten annotations from machine-printed text within a document. We present an algorithm that is based on the theory of hidden Markov models (HMMs) to distinguish between machine-printed and handwritten materials. No OCR results are required prior to or during the process, and the classification is performed at the word level. Handwritten annotations are not limited to marginal areas, as the approach can deal with document images having handwritten annotations overlaid on machine-printed text and it has been shown to be promising in our experiments. Experimental results show that the proposed method can achieve 72.19% recall for fully extracted handwritten words and 90.37% for partially extracted words. The precision of extracting handwritten words has reached 92.86%.\",\"PeriodicalId\":277816,\"journal\":{\"name\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"115\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2001.953828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Separating handwritten material from machine printed text using hidden Markov models
In this paper, we address the problem of separating handwritten annotations from machine-printed text within a document. We present an algorithm that is based on the theory of hidden Markov models (HMMs) to distinguish between machine-printed and handwritten materials. No OCR results are required prior to or during the process, and the classification is performed at the word level. Handwritten annotations are not limited to marginal areas, as the approach can deal with document images having handwritten annotations overlaid on machine-printed text and it has been shown to be promising in our experiments. Experimental results show that the proposed method can achieve 72.19% recall for fully extracted handwritten words and 90.37% for partially extracted words. The precision of extracting handwritten words has reached 92.86%.