S. Hsu, A. Agarwal, M. Anders, S. Mathew, Himanshu Kaul, F. Sheikh, R. Krishnamurthy
{"title":"基于22nm CMOS的280mv -1.1 v 256b可重构SIMD矢量置换引擎","authors":"S. Hsu, A. Agarwal, M. Anders, S. Mathew, Himanshu Kaul, F. Sheikh, R. Krishnamurthy","doi":"10.1109/ISSCC.2012.6176966","DOIUrl":null,"url":null,"abstract":"Energy-efficient SIMD permutation operations are key for maximizing high-performance microprocessor vector datapath utilization in multimedia, graphics, and signal processing workloads [1-3]. A wide SIMD vector permutation engine is required to achieve high-throughput data rearrangement operations on large data sets, with scaled supply voltages to deliver high energy efficiency. An ultra-low-voltage reconfigurable 4-way to 32-way SIMD vector permutation engine consisting of a 32-entry × 256b 3-read/1-write ported register file with a 256b byte-wise any-to-any permute crossbar for 2-dimensional shuffle is fabricated in 22nm CMOS. The register file integrates a vertical shuffle across multiple entries into read/write operations, and includes clockless static reads with shared P/N dual-ended transmission gate (DETG) writes, improving register file VMIN by 250mV across PVT variations with a wide dynamic operating range of 280mV-1.1V. The permute crossbar implements an interleaved folded byte-wise multiplexer layout forming an any-to-any fully-connected tree to perform a horizontal shuffle with permute accumulate circuits, and includes vector flip-flops, stacked min-delay buffers, shared gates to average min-sized transistor variation, and ultra-low-voltage split-output (ULVS) level shifters improving logic VMIN by 150mV, while enabling peak energy efficiency of 585GOPS/W measured at 260mV, 50°C. The permutation engine occupies a dense layout of 0.048mm2 (Fig. 10.1.7) while achieving: (i) nominal register file performance of 1.8GHz, 106mW measured at 0.9V, 50°C; (ii) robust register file functionality measured down to 280mV (subthreshold) with peak energy efficiency of 154GOPS/W; (iii) scalable permute crossbar performance of 2.9GHz, 69mW measured at 1.1V, 50°C with deep sub-threshold operation at 240mV, 10MHz consuming 19μW; and (iv) a 64b 4×4 matrix transpose algorithm with 53% energy savings and 42% improved peak throughput of 263Gbps measured at 1.8GHz, 0.9V.","PeriodicalId":255282,"journal":{"name":"2012 IEEE International Solid-State Circuits Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"A 280mV-to-1.1V 256b reconfigurable SIMD vector permutation engine with 2-dimensional shuffle in 22nm CMOS\",\"authors\":\"S. Hsu, A. Agarwal, M. Anders, S. Mathew, Himanshu Kaul, F. Sheikh, R. Krishnamurthy\",\"doi\":\"10.1109/ISSCC.2012.6176966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy-efficient SIMD permutation operations are key for maximizing high-performance microprocessor vector datapath utilization in multimedia, graphics, and signal processing workloads [1-3]. A wide SIMD vector permutation engine is required to achieve high-throughput data rearrangement operations on large data sets, with scaled supply voltages to deliver high energy efficiency. An ultra-low-voltage reconfigurable 4-way to 32-way SIMD vector permutation engine consisting of a 32-entry × 256b 3-read/1-write ported register file with a 256b byte-wise any-to-any permute crossbar for 2-dimensional shuffle is fabricated in 22nm CMOS. The register file integrates a vertical shuffle across multiple entries into read/write operations, and includes clockless static reads with shared P/N dual-ended transmission gate (DETG) writes, improving register file VMIN by 250mV across PVT variations with a wide dynamic operating range of 280mV-1.1V. The permute crossbar implements an interleaved folded byte-wise multiplexer layout forming an any-to-any fully-connected tree to perform a horizontal shuffle with permute accumulate circuits, and includes vector flip-flops, stacked min-delay buffers, shared gates to average min-sized transistor variation, and ultra-low-voltage split-output (ULVS) level shifters improving logic VMIN by 150mV, while enabling peak energy efficiency of 585GOPS/W measured at 260mV, 50°C. The permutation engine occupies a dense layout of 0.048mm2 (Fig. 10.1.7) while achieving: (i) nominal register file performance of 1.8GHz, 106mW measured at 0.9V, 50°C; (ii) robust register file functionality measured down to 280mV (subthreshold) with peak energy efficiency of 154GOPS/W; (iii) scalable permute crossbar performance of 2.9GHz, 69mW measured at 1.1V, 50°C with deep sub-threshold operation at 240mV, 10MHz consuming 19μW; and (iv) a 64b 4×4 matrix transpose algorithm with 53% energy savings and 42% improved peak throughput of 263Gbps measured at 1.8GHz, 0.9V.\",\"PeriodicalId\":255282,\"journal\":{\"name\":\"2012 IEEE International Solid-State Circuits Conference\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Solid-State Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2012.6176966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2012.6176966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 280mV-to-1.1V 256b reconfigurable SIMD vector permutation engine with 2-dimensional shuffle in 22nm CMOS
Energy-efficient SIMD permutation operations are key for maximizing high-performance microprocessor vector datapath utilization in multimedia, graphics, and signal processing workloads [1-3]. A wide SIMD vector permutation engine is required to achieve high-throughput data rearrangement operations on large data sets, with scaled supply voltages to deliver high energy efficiency. An ultra-low-voltage reconfigurable 4-way to 32-way SIMD vector permutation engine consisting of a 32-entry × 256b 3-read/1-write ported register file with a 256b byte-wise any-to-any permute crossbar for 2-dimensional shuffle is fabricated in 22nm CMOS. The register file integrates a vertical shuffle across multiple entries into read/write operations, and includes clockless static reads with shared P/N dual-ended transmission gate (DETG) writes, improving register file VMIN by 250mV across PVT variations with a wide dynamic operating range of 280mV-1.1V. The permute crossbar implements an interleaved folded byte-wise multiplexer layout forming an any-to-any fully-connected tree to perform a horizontal shuffle with permute accumulate circuits, and includes vector flip-flops, stacked min-delay buffers, shared gates to average min-sized transistor variation, and ultra-low-voltage split-output (ULVS) level shifters improving logic VMIN by 150mV, while enabling peak energy efficiency of 585GOPS/W measured at 260mV, 50°C. The permutation engine occupies a dense layout of 0.048mm2 (Fig. 10.1.7) while achieving: (i) nominal register file performance of 1.8GHz, 106mW measured at 0.9V, 50°C; (ii) robust register file functionality measured down to 280mV (subthreshold) with peak energy efficiency of 154GOPS/W; (iii) scalable permute crossbar performance of 2.9GHz, 69mW measured at 1.1V, 50°C with deep sub-threshold operation at 240mV, 10MHz consuming 19μW; and (iv) a 64b 4×4 matrix transpose algorithm with 53% energy savings and 42% improved peak throughput of 263Gbps measured at 1.8GHz, 0.9V.