再看一下神经网络的预测准确性

M.C. Brace, V. Bui-Nguyen, J. Schmidt
{"title":"再看一下神经网络的预测准确性","authors":"M.C. Brace, V. Bui-Nguyen, J. Schmidt","doi":"10.1109/ANN.1993.264316","DOIUrl":null,"url":null,"abstract":"This paper compares the ability of six artificial neural networks to predict hourly system load for the Puget Sound Power and Light Company, a major North American electric utility. The neural nets, along with four other types of models, were used to forecast hourly system load for the next day on an hour by hour basis. This was done for the period November 1, 1991 to March 31, 1992.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Another look at forecast accuracy of neural networks\",\"authors\":\"M.C. Brace, V. Bui-Nguyen, J. Schmidt\",\"doi\":\"10.1109/ANN.1993.264316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper compares the ability of six artificial neural networks to predict hourly system load for the Puget Sound Power and Light Company, a major North American electric utility. The neural nets, along with four other types of models, were used to forecast hourly system load for the next day on an hour by hour basis. This was done for the period November 1, 1991 to March 31, 1992.<<ETX>>\",\"PeriodicalId\":121897,\"journal\":{\"name\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANN.1993.264316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文比较了六种人工神经网络预测北美主要电力公司普吉特海湾电力和照明公司每小时系统负荷的能力。神经网络,连同其他四种类型的模型,被用来预测每小时的系统负荷,以每小时为基础的第二天。这是1991年11月1日至1992年3月31日期间的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Another look at forecast accuracy of neural networks
This paper compares the ability of six artificial neural networks to predict hourly system load for the Puget Sound Power and Light Company, a major North American electric utility. The neural nets, along with four other types of models, were used to forecast hourly system load for the next day on an hour by hour basis. This was done for the period November 1, 1991 to March 31, 1992.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adaptive fuzzy logic controller for AC-DC power systems Discrimination of partial discharge from noise in XLPE cable lines using a neural network Automation, with neural network based techniques, of short-term load forecasting at the Belgian national control centre Maximum electric power demand prediction by neural network Restoring current signals in real time using feedforward neural nets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1