基于自适应神经模糊推理系统的CO2激光烧蚀镀铝聚甲基丙烯酸甲酯(PMMA)表面粗糙度建模

Job Lazarus Okello, A. F. El-Bab, M. Yoshino, H. El-Hofy, M. Hassan
{"title":"基于自适应神经模糊推理系统的CO2激光烧蚀镀铝聚甲基丙烯酸甲酯(PMMA)表面粗糙度建模","authors":"Job Lazarus Okello, A. F. El-Bab, M. Yoshino, H. El-Hofy, M. Hassan","doi":"10.1115/imece2022-92024","DOIUrl":null,"url":null,"abstract":"\n High surface roughness hinders the flow of fluids in microchannels leading to low accuracy and poor-quality products. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was used to examine surface roughness in CO2 laser fabrication of microchannels on polymethyl methacrylate (PMMA). The PMMA substrates were coated with a 500 nm layer of 99.95% pure aluminium. The inputs were speed (10, 15, and 20 mm/s), power (1.5, 3.0, and 4.5 W), and pulse rate (800, 900, and 1000 pules per inch) while the output was surface roughness. A 3-level full factorial design of experiments was used, and 27 experiments were conducted. Using the gaussian membership function (gaussmf), the ANFIS model was developed using the ANFIS toolbox in MATLAB R2022a. Analysis of variance was performed to examine the significance of the inputs. Power is the most significant followed by speed and pulse rate. The mean relative error (MRE), mean absolute error (MAE), and the correlation coefficient (R) were used to examine the accuracy and viability of the model. MRE, MAE, and R were found to be 0.257, 0.899, and 0.9957 (R2 = 0.9914) respectively. The root mean square error (RMSE) was 0.0022 and 3.6099 for the training data and checking data respectively. Hence, the developed model can predict the values of the average surface roughness with high accuracy.","PeriodicalId":113474,"journal":{"name":"Volume 2B: Advanced Manufacturing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modelling of Surface Roughness in CO2 Laser Ablation of Aluminium-Coated Polymethyl Methacrylate (PMMA) Using Adaptive Neuro-Fuzzy Inference System (ANFIS)\",\"authors\":\"Job Lazarus Okello, A. F. El-Bab, M. Yoshino, H. El-Hofy, M. Hassan\",\"doi\":\"10.1115/imece2022-92024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n High surface roughness hinders the flow of fluids in microchannels leading to low accuracy and poor-quality products. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was used to examine surface roughness in CO2 laser fabrication of microchannels on polymethyl methacrylate (PMMA). The PMMA substrates were coated with a 500 nm layer of 99.95% pure aluminium. The inputs were speed (10, 15, and 20 mm/s), power (1.5, 3.0, and 4.5 W), and pulse rate (800, 900, and 1000 pules per inch) while the output was surface roughness. A 3-level full factorial design of experiments was used, and 27 experiments were conducted. Using the gaussian membership function (gaussmf), the ANFIS model was developed using the ANFIS toolbox in MATLAB R2022a. Analysis of variance was performed to examine the significance of the inputs. Power is the most significant followed by speed and pulse rate. The mean relative error (MRE), mean absolute error (MAE), and the correlation coefficient (R) were used to examine the accuracy and viability of the model. MRE, MAE, and R were found to be 0.257, 0.899, and 0.9957 (R2 = 0.9914) respectively. The root mean square error (RMSE) was 0.0022 and 3.6099 for the training data and checking data respectively. Hence, the developed model can predict the values of the average surface roughness with high accuracy.\",\"PeriodicalId\":113474,\"journal\":{\"name\":\"Volume 2B: Advanced Manufacturing\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2B: Advanced Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-92024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2B: Advanced Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-92024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

高表面粗糙度阻碍了微通道中流体的流动,导致精度低和产品质量差。在这项工作中,采用自适应神经模糊推理系统(ANFIS)来检测CO2激光加工聚甲基丙烯酸甲酯(PMMA)微通道的表面粗糙度。PMMA衬底涂有一层500 nm的99.95%纯铝层。输入为速度(10、15和20 mm/s)、功率(1.5、3.0和4.5 W)和脉冲速率(800、900和1000脉冲/英寸),输出为表面粗糙度。试验采用3水平全因子设计,共进行27项试验。利用MATLAB R2022a中的ANFIS工具箱,利用高斯隶属函数(gaussmf)建立了ANFIS模型。进行方差分析以检验输入的显著性。功率是最重要的,其次是速度和脉搏率。采用平均相对误差(MRE)、平均绝对误差(MAE)和相关系数(R)来检验模型的准确性和可行性。MRE、MAE、R分别为0.257、0.899、0.9957 (R2 = 0.9914)。训练数据和检验数据的均方根误差(RMSE)分别为0.0022和3.6099。因此,所建立的模型可以较准确地预测平均表面粗糙度值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling of Surface Roughness in CO2 Laser Ablation of Aluminium-Coated Polymethyl Methacrylate (PMMA) Using Adaptive Neuro-Fuzzy Inference System (ANFIS)
High surface roughness hinders the flow of fluids in microchannels leading to low accuracy and poor-quality products. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was used to examine surface roughness in CO2 laser fabrication of microchannels on polymethyl methacrylate (PMMA). The PMMA substrates were coated with a 500 nm layer of 99.95% pure aluminium. The inputs were speed (10, 15, and 20 mm/s), power (1.5, 3.0, and 4.5 W), and pulse rate (800, 900, and 1000 pules per inch) while the output was surface roughness. A 3-level full factorial design of experiments was used, and 27 experiments were conducted. Using the gaussian membership function (gaussmf), the ANFIS model was developed using the ANFIS toolbox in MATLAB R2022a. Analysis of variance was performed to examine the significance of the inputs. Power is the most significant followed by speed and pulse rate. The mean relative error (MRE), mean absolute error (MAE), and the correlation coefficient (R) were used to examine the accuracy and viability of the model. MRE, MAE, and R were found to be 0.257, 0.899, and 0.9957 (R2 = 0.9914) respectively. The root mean square error (RMSE) was 0.0022 and 3.6099 for the training data and checking data respectively. Hence, the developed model can predict the values of the average surface roughness with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Methodology for Digital Twins of Product Lifecycle Supported by Digital Thread Thermal Analysis and Design of Self-Heating Molds Using Large-Scale Additive Manufacturing for Out-of-Autoclave Applications Conveyer-Less Matrix Assembly Layout Design to Maximize Labor Productivity and Footprint Usage A Comparative Numerical Investigation on Machining of Laminated and 3D Printed CFRP Composites Modelling of Surface Roughness in CO2 Laser Ablation of Aluminium-Coated Polymethyl Methacrylate (PMMA) Using Adaptive Neuro-Fuzzy Inference System (ANFIS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1