个人三维模型估计实时人体运动捕捉

Lianjun Liao, Le Su, Shi-hong Xia
{"title":"个人三维模型估计实时人体运动捕捉","authors":"Lianjun Liao, Le Su, Shi-hong Xia","doi":"10.1109/ICVRV.2017.00055","DOIUrl":null,"url":null,"abstract":"In this paper, we present a practicable method to estimate individual 3D human model in a low cost multi-view realtime 3D human motion capture system. The key idea is: using human geometric model database and human motion database to establish geometric priors and pose prior model; when given the geometric prior, pose prior and a standard template geometry model, the individual human body model and its embedded skeleton can be estimated from the 3D point cloud captured from multiple depth cameras. Because of the introduction of the global prior model of body pose and shapes into a unified nonlinear optimization problem, the accuracy of geometric model estimation is significantly improved. The experiments on the synthesized data set with noise or without noise and the real data set captured from multiple depth cameras show that estimation result of our method is more reasonable and accurate than the classical method, and our method is better noise-immunity. The proposed new individual 3D geometric model estimation method is suitable for online realtime human motion tracking system.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"335 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Individual 3D Model Estimation for Realtime Human Motion Capture\",\"authors\":\"Lianjun Liao, Le Su, Shi-hong Xia\",\"doi\":\"10.1109/ICVRV.2017.00055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a practicable method to estimate individual 3D human model in a low cost multi-view realtime 3D human motion capture system. The key idea is: using human geometric model database and human motion database to establish geometric priors and pose prior model; when given the geometric prior, pose prior and a standard template geometry model, the individual human body model and its embedded skeleton can be estimated from the 3D point cloud captured from multiple depth cameras. Because of the introduction of the global prior model of body pose and shapes into a unified nonlinear optimization problem, the accuracy of geometric model estimation is significantly improved. The experiments on the synthesized data set with noise or without noise and the real data set captured from multiple depth cameras show that estimation result of our method is more reasonable and accurate than the classical method, and our method is better noise-immunity. The proposed new individual 3D geometric model estimation method is suitable for online realtime human motion tracking system.\",\"PeriodicalId\":187934,\"journal\":{\"name\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"volume\":\"335 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRV.2017.00055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2017.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种在低成本多视角实时三维人体动作捕捉系统中估计个体三维人体模型的实用方法。关键思想是:利用人体几何模型数据库和人体运动数据库建立几何先验和位姿先验模型;当给定几何先验、位姿先验和标准模板几何模型时,可以从多个深度相机捕获的3D点云中估计出个体人体模型及其嵌入的骨骼。由于将人体姿态和形状的全局先验模型引入到统一的非线性优化问题中,大大提高了几何模型估计的精度。在含噪和不含噪的合成数据集以及多台深度相机采集的真实数据集上进行的实验表明,该方法的估计结果比经典方法更合理、更准确,并且具有更好的抗噪性。该方法适用于在线实时人体运动跟踪系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Individual 3D Model Estimation for Realtime Human Motion Capture
In this paper, we present a practicable method to estimate individual 3D human model in a low cost multi-view realtime 3D human motion capture system. The key idea is: using human geometric model database and human motion database to establish geometric priors and pose prior model; when given the geometric prior, pose prior and a standard template geometry model, the individual human body model and its embedded skeleton can be estimated from the 3D point cloud captured from multiple depth cameras. Because of the introduction of the global prior model of body pose and shapes into a unified nonlinear optimization problem, the accuracy of geometric model estimation is significantly improved. The experiments on the synthesized data set with noise or without noise and the real data set captured from multiple depth cameras show that estimation result of our method is more reasonable and accurate than the classical method, and our method is better noise-immunity. The proposed new individual 3D geometric model estimation method is suitable for online realtime human motion tracking system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feature-Enhanced Surfaces from Incomplete Point Cloud with Segmentation and Curve Skeleton Information Efficiently Disassemble-and-Pack for Mechanism Surface Flattening Based on Energy Fabric Deformation Model in Garment Design A Novel Intelligent Thyroid Nodule Diagnosis System over Ultrasound Images Based on Deep Learning A Novel Reconstruction Method of 3D Heart Geometry Atlas Based on Visible Human
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1