Weijiang Feng, Naiyang Guan, Xiang Zhang, Xuhui Huang, Zhigang Luo
{"title":"基于单、多混合散射模型的单幅图像去雾","authors":"Weijiang Feng, Naiyang Guan, Xiang Zhang, Xuhui Huang, Zhigang Luo","doi":"10.1109/SPAC.2014.6982693","DOIUrl":null,"url":null,"abstract":"Image defogging (IDF) removes influences of fogs from an image to improve its quality. Since defogged images can significantly boost the performance of subsequent processing, IDF has attracted many attentions from the computer vision community. However, existing IDF algorithms are built on the assumption that light is scattered once by a grain. Since such assumption is violated if images are contaminated by dense haze or heavy fog, traditional IDF algorithms often fail in this situation. In this paper, we propose a hybrid image defogging (HIDF) algorithm to overcome this deficiency. In particular, HIDF applies the single scattering physics model (SSPM) to pixels dominated by single scattering of light, and applies the multiple scattering physics model (MSPM) to remaining pixels. To distinguish two types of pixels, HIDF utilizes the optical thickness of corresponding pixels. If optical thickness is smaller than a threshold that determines whether the single scattering or the multiple scattering dominates, HIDF applies the SSPM, and HIDF applies the MSPM otherwise. Experimental results on several popular foggy images demonstrate that HIDF competes with the state-of-the-art algorithms, and show the promise of HIDF for defogging heavily foggy images.","PeriodicalId":326246,"journal":{"name":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Single image defogging with single and multiple hybrid scattering model\",\"authors\":\"Weijiang Feng, Naiyang Guan, Xiang Zhang, Xuhui Huang, Zhigang Luo\",\"doi\":\"10.1109/SPAC.2014.6982693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image defogging (IDF) removes influences of fogs from an image to improve its quality. Since defogged images can significantly boost the performance of subsequent processing, IDF has attracted many attentions from the computer vision community. However, existing IDF algorithms are built on the assumption that light is scattered once by a grain. Since such assumption is violated if images are contaminated by dense haze or heavy fog, traditional IDF algorithms often fail in this situation. In this paper, we propose a hybrid image defogging (HIDF) algorithm to overcome this deficiency. In particular, HIDF applies the single scattering physics model (SSPM) to pixels dominated by single scattering of light, and applies the multiple scattering physics model (MSPM) to remaining pixels. To distinguish two types of pixels, HIDF utilizes the optical thickness of corresponding pixels. If optical thickness is smaller than a threshold that determines whether the single scattering or the multiple scattering dominates, HIDF applies the SSPM, and HIDF applies the MSPM otherwise. Experimental results on several popular foggy images demonstrate that HIDF competes with the state-of-the-art algorithms, and show the promise of HIDF for defogging heavily foggy images.\",\"PeriodicalId\":326246,\"journal\":{\"name\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC.2014.6982693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2014.6982693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single image defogging with single and multiple hybrid scattering model
Image defogging (IDF) removes influences of fogs from an image to improve its quality. Since defogged images can significantly boost the performance of subsequent processing, IDF has attracted many attentions from the computer vision community. However, existing IDF algorithms are built on the assumption that light is scattered once by a grain. Since such assumption is violated if images are contaminated by dense haze or heavy fog, traditional IDF algorithms often fail in this situation. In this paper, we propose a hybrid image defogging (HIDF) algorithm to overcome this deficiency. In particular, HIDF applies the single scattering physics model (SSPM) to pixels dominated by single scattering of light, and applies the multiple scattering physics model (MSPM) to remaining pixels. To distinguish two types of pixels, HIDF utilizes the optical thickness of corresponding pixels. If optical thickness is smaller than a threshold that determines whether the single scattering or the multiple scattering dominates, HIDF applies the SSPM, and HIDF applies the MSPM otherwise. Experimental results on several popular foggy images demonstrate that HIDF competes with the state-of-the-art algorithms, and show the promise of HIDF for defogging heavily foggy images.