求解非线性约束优化问题的改进粒子群算法

Jinhua Zheng, Qian Wu, Wu Song
{"title":"求解非线性约束优化问题的改进粒子群算法","authors":"Jinhua Zheng, Qian Wu, Wu Song","doi":"10.1109/ICNC.2007.221","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved particle swarm optimization algorithm(IPSO). IPSO adopts a new mutation operator and a new method that congregates some neighboring individuals to form multiple sub- populations in order to lead particles to explore new search space. Additionally, our algorithm incorporates a mechanism with a simple and easy penalty function to handle constraint. Thus, our algorithm has strong global exploratory capability and efficiency while being applied to solve nonlinear constrained optimization problems. Experimental results indicate that our IPSO is robust and efficient in solving nonlinear constrained optimization problems.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"An Improved Particle Swarm Algorithm for Solving Nonlinear Constrained Optimization Problems\",\"authors\":\"Jinhua Zheng, Qian Wu, Wu Song\",\"doi\":\"10.1109/ICNC.2007.221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an improved particle swarm optimization algorithm(IPSO). IPSO adopts a new mutation operator and a new method that congregates some neighboring individuals to form multiple sub- populations in order to lead particles to explore new search space. Additionally, our algorithm incorporates a mechanism with a simple and easy penalty function to handle constraint. Thus, our algorithm has strong global exploratory capability and efficiency while being applied to solve nonlinear constrained optimization problems. Experimental results indicate that our IPSO is robust and efficient in solving nonlinear constrained optimization problems.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

提出一种改进的粒子群优化算法(IPSO)。IPSO采用了一种新的变异算子和一种新的方法,将一些相邻的个体聚集成多个亚种群,从而引导粒子探索新的搜索空间。此外,我们的算法还结合了一种带有简单易行的惩罚函数的机制来处理约束。因此,该算法在求解非线性约束优化问题时具有较强的全局探索能力和效率。实验结果表明,该算法具有较好的鲁棒性和求解非线性约束优化问题的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Improved Particle Swarm Algorithm for Solving Nonlinear Constrained Optimization Problems
This paper proposes an improved particle swarm optimization algorithm(IPSO). IPSO adopts a new mutation operator and a new method that congregates some neighboring individuals to form multiple sub- populations in order to lead particles to explore new search space. Additionally, our algorithm incorporates a mechanism with a simple and easy penalty function to handle constraint. Thus, our algorithm has strong global exploratory capability and efficiency while being applied to solve nonlinear constrained optimization problems. Experimental results indicate that our IPSO is robust and efficient in solving nonlinear constrained optimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1