{"title":"Pemodelan Pertumbuhan Ekonomi di Jawa Barat Menggunakan Metode Geographically Weighted Panel Regression","authors":"Prizka rismawati Arum, Siva Alfian","doi":"10.36456/jstat.vol15.no2.a5506","DOIUrl":null,"url":null,"abstract":"Salah satu tujuan negara adalah meningkatkan pertumbuhan ekonomi. Diperlukan pembangunan ekonomi untuk mewujudkan tujuan tersebut demi mencapai masyarakat yang sejahtera. Salah satu indikator pertumbuhan ekonomi adalah Produk Domestik Regional Bruto (PDRB). Data yang digunakan yaitu data sekunder tentang produk domestik regional bruto, jumlah penduduk miskin, pengeluaran pemerintah, rata - rata lama sekolah, tingkat partisipasi angkatan kerja, fasilitas kesehatan, tingkat pengangguran terbuka, pada tahun 2018 - 2020 di Provinsi Jawa Barat. Ternyata terdapat autokorelasi spasial dalam data tersebut, sehingga pemodelan yang tepat untuk data panel dan terdapat efek spasial dapat dilakukan menggunakan Geographically Weighted Panel Regression (GWPR). Dengan menggunakan GWPR diharapkan dapat menghasilkan hasil yang lebih menyeluruh dibandingkan dengan model GWR. Model Geographically Weighted Panel Regression yang dihasilkan yaitu model fixed effect dengan pembobot adaptive gaussian kernel dan fixed gaussian kernel. Tujuan dari penelitian ini adalah mengetahui gambaran umum data, mendapatkan model, dan memperoleh model terbaik pertumbuhan ekonomi di Jawa Barat. Hasil akhir dari penelitian ini menunjukkan bahwa model dengan pembobot Adaptive Gaussian Kernel lebih baik daripada Fixed Gaussian Kernel karena memiliki nilai AIC terkecil dan R2 terbesar. Nilai AICnya sebesar 2313,117 dan nilai R2 sebesar 0,7955945.","PeriodicalId":118320,"journal":{"name":"J Statistika: Jurnal Ilmiah Teori dan Aplikasi Statistika","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J Statistika: Jurnal Ilmiah Teori dan Aplikasi Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36456/jstat.vol15.no2.a5506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

国家的目标之一是促进经济增长。实现这一目标需要经济发展,以实现一个繁荣的社会。经济增长的一个指标是国内生产总值(PDRB)。2018年至2020年,西爪哇省的国内生产总值、贫困人口、政府支出、旧学校平均水平、工人参与率、卫生设施、公开失业率等。事实证明,这些数据中有自空间相关性,因此可以利用重力抑制面板进行精确的建模和具有空间效果。使用GWPR预计将产生比GWR模型更全面的结果。图形放大面板的结果是固定效果与带电内核gaxve gaustic和fixed gaussian内核。这项研究的目的是了解数据的总体情况,获得模型,并获得西爪哇经济增长最好的模型。这项研究的最终结果表明,聚糖聚糖的内核模型比Fixed Gaussian的内核更好,因为它的AIC值是最小的,也是最大的R2值。aic值为2313,117,R2值为0,7955945。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pemodelan Pertumbuhan Ekonomi di Jawa Barat Menggunakan Metode Geographically Weighted Panel Regression
Salah satu tujuan negara adalah meningkatkan pertumbuhan ekonomi. Diperlukan pembangunan ekonomi untuk mewujudkan tujuan tersebut demi mencapai masyarakat yang sejahtera. Salah satu indikator pertumbuhan ekonomi adalah Produk Domestik Regional Bruto (PDRB). Data yang digunakan yaitu data sekunder tentang produk domestik regional bruto, jumlah penduduk miskin, pengeluaran pemerintah, rata - rata lama sekolah, tingkat partisipasi angkatan kerja, fasilitas kesehatan, tingkat pengangguran terbuka, pada tahun 2018 - 2020 di Provinsi Jawa Barat. Ternyata terdapat autokorelasi spasial dalam data tersebut, sehingga pemodelan yang tepat untuk data panel dan terdapat efek spasial dapat dilakukan menggunakan Geographically Weighted Panel Regression (GWPR). Dengan menggunakan GWPR diharapkan dapat menghasilkan hasil yang lebih menyeluruh dibandingkan dengan model GWR. Model Geographically Weighted Panel Regression yang dihasilkan yaitu model fixed effect dengan pembobot adaptive gaussian kernel dan fixed gaussian kernel. Tujuan dari penelitian ini adalah mengetahui gambaran umum data, mendapatkan model, dan memperoleh model terbaik pertumbuhan ekonomi di Jawa Barat. Hasil akhir dari penelitian ini menunjukkan bahwa model dengan pembobot Adaptive Gaussian Kernel lebih baik daripada Fixed Gaussian Kernel karena memiliki nilai AIC terkecil dan R2 terbesar. Nilai AICnya sebesar 2313,117 dan nilai R2 sebesar 0,7955945.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analisis Partial Least Square Structural Equation Model (PLS-SEM) untuk Pemodelan Penerimaan Sistem Jaringan Informasi Bersama Antar Sekolah (JIBAS) Faktor – Faktor yang Memengaruhi Permasalahan Stunting di Jawa Barat Menggunakan Regresi Logistik Biner Pemodelan Pertumbuhan Ekonomi di Jawa Barat Menggunakan Metode Geographically Weighted Panel Regression Penerapan Metode Clustering SOM dan DBSCAN dalam Mengelompokkan Unmet Need Keluarga Berencana di Nusa Tenggara Barat Teknik Oversampling Pada Regresi Logistik Ordinal Dalam Menduga Faktor Yang Memengaruhi Risiko Penyebaran Zona Covid-19 di Kabupaten Garut
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1