考虑累积需求区间预算不确定性的鲁棒生产计划问题求解

A. Kasperski, P. Zieliński
{"title":"考虑累积需求区间预算不确定性的鲁棒生产计划问题求解","authors":"A. Kasperski, P. Zieliński","doi":"10.1142/s2196888822500166","DOIUrl":null,"url":null,"abstract":"In this paper, a production planning problem with inventory and backordering levels is discussed. It is assumed that cumulative demands in periods are uncertain and an interval uncertainty representation with continuous budget is used to model this uncertainty. The robust minmax criterion is applied to compute an optimal production plan. A row and column generation algorithm is constructed for solving the problem. Results of some computational tests are shown which demonstrate that the algorithm is efficient for the instances with up to 100 periods and returns solutions that are robust against the uncertainty in demands.","PeriodicalId":256649,"journal":{"name":"Vietnam. J. Comput. Sci.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving Robust Production Planning Problem with Interval Budgeted Uncertainty in Cumulative Demands\",\"authors\":\"A. Kasperski, P. Zieliński\",\"doi\":\"10.1142/s2196888822500166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a production planning problem with inventory and backordering levels is discussed. It is assumed that cumulative demands in periods are uncertain and an interval uncertainty representation with continuous budget is used to model this uncertainty. The robust minmax criterion is applied to compute an optimal production plan. A row and column generation algorithm is constructed for solving the problem. Results of some computational tests are shown which demonstrate that the algorithm is efficient for the instances with up to 100 periods and returns solutions that are robust against the uncertainty in demands.\",\"PeriodicalId\":256649,\"journal\":{\"name\":\"Vietnam. J. Comput. Sci.\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam. J. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2196888822500166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam. J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2196888822500166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了具有库存和缺货水平的生产计划问题。假设周期内的累积需求是不确定的,用连续预算的区间不确定表示对这种不确定性进行建模。应用鲁棒极小值准则计算最优生产计划。构造了一个行和列生成算法来解决这个问题。计算实验结果表明,该算法对100周期以内的实例是有效的,并且返回的解对需求的不确定性具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solving Robust Production Planning Problem with Interval Budgeted Uncertainty in Cumulative Demands
In this paper, a production planning problem with inventory and backordering levels is discussed. It is assumed that cumulative demands in periods are uncertain and an interval uncertainty representation with continuous budget is used to model this uncertainty. The robust minmax criterion is applied to compute an optimal production plan. A row and column generation algorithm is constructed for solving the problem. Results of some computational tests are shown which demonstrate that the algorithm is efficient for the instances with up to 100 periods and returns solutions that are robust against the uncertainty in demands.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Arabic Sentiment Analysis Using LSTM Based on Word Embedding Models Synthetic Data Generation for Morphological Analyses of Histopathology Images with Deep Learning Models Generating Popularity-Aware Reciprocal Recommendations Using Siamese Bi-Directional Gated Recurrent Units Network Hyperparameter Optimization of a Parallelized LSTM for Time Series Prediction Natural Language Processing and Sentiment Analysis on Bangla Social Media Comments on Russia-Ukraine War Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1