无机印刷电子器件物理不可克隆功能的设计与评价

Ahmet Turan Erozan, M. Golanbari, R. Bishnoi, J. Aghassi‐Hagmann, M. Tahoori
{"title":"无机印刷电子器件物理不可克隆功能的设计与评价","authors":"Ahmet Turan Erozan, M. Golanbari, R. Bishnoi, J. Aghassi‐Hagmann, M. Tahoori","doi":"10.1109/ISQED.2018.8357323","DOIUrl":null,"url":null,"abstract":"Printed Electronics (PE) is a promising technology that provides mechanical flexibility and low-cost fabrication. These features make PE the key enabler for emerging applications, such as smart sensors, wearables, and Internet of Things (IoTs). Since these applications need secure communication and/or authentication, it is vital to utilize security primitives for cryptographic key and identification. Physical Unclonable Functions (PUF) have been adopted widely to provide the secure keys. In this work, we present a weak PUF based on Electrolyte-gated FETs using inorganic inkjet printed electronics. A comprehensive analysis framework including Monte Carlo simulations based on real device measurements is developed to evaluate the proposed PE-PUF. Moreover, a multi-bit PE-PUF design is proposed to optimize area usage. The analysis results show that the PE-PUF has ideal uniqueness, good reliability, and can operates at low voltage which is critical for low-power PE applications. In addition, the proposed multi-bit PE-PUF reduces the area usage around 30%.","PeriodicalId":213351,"journal":{"name":"2018 19th International Symposium on Quality Electronic Design (ISQED)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Design and evaluation of physical unclonable function for inorganic printed electronics\",\"authors\":\"Ahmet Turan Erozan, M. Golanbari, R. Bishnoi, J. Aghassi‐Hagmann, M. Tahoori\",\"doi\":\"10.1109/ISQED.2018.8357323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Printed Electronics (PE) is a promising technology that provides mechanical flexibility and low-cost fabrication. These features make PE the key enabler for emerging applications, such as smart sensors, wearables, and Internet of Things (IoTs). Since these applications need secure communication and/or authentication, it is vital to utilize security primitives for cryptographic key and identification. Physical Unclonable Functions (PUF) have been adopted widely to provide the secure keys. In this work, we present a weak PUF based on Electrolyte-gated FETs using inorganic inkjet printed electronics. A comprehensive analysis framework including Monte Carlo simulations based on real device measurements is developed to evaluate the proposed PE-PUF. Moreover, a multi-bit PE-PUF design is proposed to optimize area usage. The analysis results show that the PE-PUF has ideal uniqueness, good reliability, and can operates at low voltage which is critical for low-power PE applications. In addition, the proposed multi-bit PE-PUF reduces the area usage around 30%.\",\"PeriodicalId\":213351,\"journal\":{\"name\":\"2018 19th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 19th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2018.8357323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2018.8357323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

印刷电子技术(PE)是一种很有前途的技术,它提供了机械灵活性和低成本的制造。这些特性使PE成为智能传感器、可穿戴设备和物联网(iot)等新兴应用的关键推动者。由于这些应用程序需要安全的通信和/或身份验证,因此对加密密钥和标识使用安全原语至关重要。物理不可克隆函数(Physical unclable Functions, PUF)被广泛采用来提供安全密钥。在这项工作中,我们提出了一个基于无机喷墨印刷电子器件的电解质门控场效应管的弱PUF。开发了一个综合分析框架,包括基于实际设备测量的蒙特卡罗模拟,以评估所提出的PE-PUF。此外,还提出了一种多比特PE-PUF设计,以优化面积利用率。分析结果表明,PE- puf具有理想的唯一性、良好的可靠性,并且可以在低电压下工作,这对于低功耗PE的应用至关重要。此外,所提出的多比特PE-PUF减少了约30%的面积使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and evaluation of physical unclonable function for inorganic printed electronics
Printed Electronics (PE) is a promising technology that provides mechanical flexibility and low-cost fabrication. These features make PE the key enabler for emerging applications, such as smart sensors, wearables, and Internet of Things (IoTs). Since these applications need secure communication and/or authentication, it is vital to utilize security primitives for cryptographic key and identification. Physical Unclonable Functions (PUF) have been adopted widely to provide the secure keys. In this work, we present a weak PUF based on Electrolyte-gated FETs using inorganic inkjet printed electronics. A comprehensive analysis framework including Monte Carlo simulations based on real device measurements is developed to evaluate the proposed PE-PUF. Moreover, a multi-bit PE-PUF design is proposed to optimize area usage. The analysis results show that the PE-PUF has ideal uniqueness, good reliability, and can operates at low voltage which is critical for low-power PE applications. In addition, the proposed multi-bit PE-PUF reduces the area usage around 30%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Body-biasing assisted vmin optimization for 5nm-node multi-Vt FD-SOI 6T-SRAM PDA-HyPAR: Path-diversity-aware hybrid planar adaptive routing algorithm for 3D NoCs A loop structure optimization targeting high-level synthesis of fast number theoretic transform Hybrid-comp: A criticality-aware compressed last-level cache Low power latch based design with smart retiming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1