从综合基因表达数据中发现与癌症预后负相关的基因集

Tao Zeng, Xuan Guo, Juan Liu
{"title":"从综合基因表达数据中发现与癌症预后负相关的基因集","authors":"Tao Zeng, Xuan Guo, Juan Liu","doi":"10.1109/BIBM.2010.5706615","DOIUrl":null,"url":null,"abstract":"Along with the emergence and development of translational biomedicine, more and more genetic information has been applied in clinical practice. In recent decade, the discovery of genetic biomarkers for cancer prognosis obtains increasing attentions and many methods have been developed. The ”element” methods use one or two independent genes to judge the Boolean status of disease. The ”set” methods use general genetic biomarkers to classify patients into different risks as a whole. And the advanced ”sets” methods use a group of different gene sets as biomarkers. However, the existing methods always concern positive correlations among genes ignoring negative correlations. Whereas the negative regulation, negative feedback, and functional repression are actually the important clues in cancer expression profiles. Therefore, in this paper, we propose to mine negative correlated gene sets (NCGSs) from multiple datasets, and use them along with the pure positive correlated gene sets for prognosis classification. The exploring experimental results have shown the encouraging promotion of cancer prognosis accuracy with NCGSs.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discovering negative correlated gene sets from integrative gene expression data for cancer prognosis\",\"authors\":\"Tao Zeng, Xuan Guo, Juan Liu\",\"doi\":\"10.1109/BIBM.2010.5706615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Along with the emergence and development of translational biomedicine, more and more genetic information has been applied in clinical practice. In recent decade, the discovery of genetic biomarkers for cancer prognosis obtains increasing attentions and many methods have been developed. The ”element” methods use one or two independent genes to judge the Boolean status of disease. The ”set” methods use general genetic biomarkers to classify patients into different risks as a whole. And the advanced ”sets” methods use a group of different gene sets as biomarkers. However, the existing methods always concern positive correlations among genes ignoring negative correlations. Whereas the negative regulation, negative feedback, and functional repression are actually the important clues in cancer expression profiles. Therefore, in this paper, we propose to mine negative correlated gene sets (NCGSs) from multiple datasets, and use them along with the pure positive correlated gene sets for prognosis classification. The exploring experimental results have shown the encouraging promotion of cancer prognosis accuracy with NCGSs.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着转化生物医学的出现和发展,越来越多的遗传信息被应用于临床。近十年来,癌症预后的遗传生物标志物的发现越来越受到重视,并开发了许多方法。“元素”法使用一个或两个独立的基因来判断疾病的布尔状态。“集合”方法使用一般的遗传生物标志物将患者分类为不同的风险。先进的“集”方法使用一组不同的基因集作为生物标志物。然而,现有的方法往往只关注基因间的正相关关系,而忽略了基因间的负相关关系。而负调控、负反馈和功能抑制实际上是癌症表达谱的重要线索。因此,在本文中,我们提出从多个数据集中挖掘负相关基因集(ncgs),并将其与纯正相关基因集一起用于预后分类。探索性实验结果显示ncgs对肿瘤预后准确性的提升令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering negative correlated gene sets from integrative gene expression data for cancer prognosis
Along with the emergence and development of translational biomedicine, more and more genetic information has been applied in clinical practice. In recent decade, the discovery of genetic biomarkers for cancer prognosis obtains increasing attentions and many methods have been developed. The ”element” methods use one or two independent genes to judge the Boolean status of disease. The ”set” methods use general genetic biomarkers to classify patients into different risks as a whole. And the advanced ”sets” methods use a group of different gene sets as biomarkers. However, the existing methods always concern positive correlations among genes ignoring negative correlations. Whereas the negative regulation, negative feedback, and functional repression are actually the important clues in cancer expression profiles. Therefore, in this paper, we propose to mine negative correlated gene sets (NCGSs) from multiple datasets, and use them along with the pure positive correlated gene sets for prognosis classification. The exploring experimental results have shown the encouraging promotion of cancer prognosis accuracy with NCGSs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1