基于注意机制的卷积神经网络图像二值样本恶意软件分析

Hiromu Yakura, S. Shinozaki, R. Nishimura, Y. Oyama, Jun Sakuma
{"title":"基于注意机制的卷积神经网络图像二值样本恶意软件分析","authors":"Hiromu Yakura, S. Shinozaki, R. Nishimura, Y. Oyama, Jun Sakuma","doi":"10.1145/3128572.3140457","DOIUrl":null,"url":null,"abstract":"This paper presents a method to extract important byte sequences in malware samples by application of convolutional neural network (CNN) to images converted from binary data. This method, by combining a technique called the attention mechanism into CNN, enables calculation of an \"attention map,\" which shows regions having higher importance for classification in the image. The extracted region with higher importance can provide useful information for human analysts who investigate the functionalities of unknown malware samples. Results of our evaluation experiment using malware dataset show that the proposed method provides higher classification accuracy than a conventional method. Furthermore, analysis of malware samples based on the calculated attention map confirmed that the extracted sequences provide useful information for manual analysis.","PeriodicalId":318259,"journal":{"name":"Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Malware Analysis of Imaged Binary Samples by Convolutional Neural Network with Attention Mechanism\",\"authors\":\"Hiromu Yakura, S. Shinozaki, R. Nishimura, Y. Oyama, Jun Sakuma\",\"doi\":\"10.1145/3128572.3140457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method to extract important byte sequences in malware samples by application of convolutional neural network (CNN) to images converted from binary data. This method, by combining a technique called the attention mechanism into CNN, enables calculation of an \\\"attention map,\\\" which shows regions having higher importance for classification in the image. The extracted region with higher importance can provide useful information for human analysts who investigate the functionalities of unknown malware samples. Results of our evaluation experiment using malware dataset show that the proposed method provides higher classification accuracy than a conventional method. Furthermore, analysis of malware samples based on the calculated attention map confirmed that the extracted sequences provide useful information for manual analysis.\",\"PeriodicalId\":318259,\"journal\":{\"name\":\"Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3128572.3140457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3128572.3140457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种将卷积神经网络(CNN)应用于由二进制数据转换而成的图像中提取恶意软件样本中重要字节序列的方法。这种方法通过将一种称为注意力机制的技术结合到CNN中,可以计算出“注意力地图”,该地图显示图像中对分类具有更高重要性的区域。提取的具有较高重要性的区域可以为研究未知恶意软件样本功能的人类分析人员提供有用的信息。基于恶意软件数据集的评估实验结果表明,该方法比传统方法具有更高的分类精度。此外,基于计算的注意图对恶意软件样本的分析证实,提取的序列为人工分析提供了有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Malware Analysis of Imaged Binary Samples by Convolutional Neural Network with Attention Mechanism
This paper presents a method to extract important byte sequences in malware samples by application of convolutional neural network (CNN) to images converted from binary data. This method, by combining a technique called the attention mechanism into CNN, enables calculation of an "attention map," which shows regions having higher importance for classification in the image. The extracted region with higher importance can provide useful information for human analysts who investigate the functionalities of unknown malware samples. Results of our evaluation experiment using malware dataset show that the proposed method provides higher classification accuracy than a conventional method. Furthermore, analysis of malware samples based on the calculated attention map confirmed that the extracted sequences provide useful information for manual analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Deep Learning Session details: Lightning Round Malware Analysis of Imaged Binary Samples by Convolutional Neural Network with Attention Mechanism Generating Look-alike Names For Security Challenges An Early Warning System for Suspicious Accounts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1