{"title":"基于神经网络HJB方法的非线性系统定终时间约束最优控制","authors":"Tao Cheng, F. Lewis","doi":"10.1109/CDC.2006.377523","DOIUrl":null,"url":null,"abstract":"Fixed-final time constrained input optimal control laws using neural networks to solve Hamilton-Jacobi-Bellman (HJB) equations for general affine in the input nonlinear systems are proposed. A neural network is used to approximate the time-varying cost function using the method of least-squares on a pre-defined region and hence solve the HJB. The result is a neural network nearly optimal constrained feedback controller that has time-varying coefficients found by a priori offline tuning. The results of this paper are demonstrated on an example.","PeriodicalId":411031,"journal":{"name":"IEEE Conference on Decision and Control","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Fixed-Final Time Constrained Optimal Control of Nonlinear Systems Using Neural Network HJB Approach\",\"authors\":\"Tao Cheng, F. Lewis\",\"doi\":\"10.1109/CDC.2006.377523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fixed-final time constrained input optimal control laws using neural networks to solve Hamilton-Jacobi-Bellman (HJB) equations for general affine in the input nonlinear systems are proposed. A neural network is used to approximate the time-varying cost function using the method of least-squares on a pre-defined region and hence solve the HJB. The result is a neural network nearly optimal constrained feedback controller that has time-varying coefficients found by a priori offline tuning. The results of this paper are demonstrated on an example.\",\"PeriodicalId\":411031,\"journal\":{\"name\":\"IEEE Conference on Decision and Control\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2006.377523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2006.377523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fixed-Final Time Constrained Optimal Control of Nonlinear Systems Using Neural Network HJB Approach
Fixed-final time constrained input optimal control laws using neural networks to solve Hamilton-Jacobi-Bellman (HJB) equations for general affine in the input nonlinear systems are proposed. A neural network is used to approximate the time-varying cost function using the method of least-squares on a pre-defined region and hence solve the HJB. The result is a neural network nearly optimal constrained feedback controller that has time-varying coefficients found by a priori offline tuning. The results of this paper are demonstrated on an example.