{"title":"关于深度k近邻的鲁棒性","authors":"Chawin Sitawarin, David A. Wagner","doi":"10.1109/SPW.2019.00014","DOIUrl":null,"url":null,"abstract":"Despite a large amount of attention on adversarial examples, very few works have demonstrated an effective defense against this threat. We examine Deep k-Nearest Neighbor (DkNN), a proposed defense that combines k-Nearest Neighbor (kNN) and deep learning to improve the model's robustness to adversarial examples. It is challenging to evaluate the robustness of this scheme due to a lack of efficient algorithm for attacking kNN classifiers with large k and high-dimensional data. We propose a heuristic attack that allows us to use gradient descent to find adversarial examples for kNN classifiers, and then apply it to attack the DkNN defense as well. Results suggest that our attack is moderately stronger than any naive attack on kNN and significantly outperforms other attacks on DkNN.","PeriodicalId":125351,"journal":{"name":"2019 IEEE Security and Privacy Workshops (SPW)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"On the Robustness of Deep K-Nearest Neighbors\",\"authors\":\"Chawin Sitawarin, David A. Wagner\",\"doi\":\"10.1109/SPW.2019.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite a large amount of attention on adversarial examples, very few works have demonstrated an effective defense against this threat. We examine Deep k-Nearest Neighbor (DkNN), a proposed defense that combines k-Nearest Neighbor (kNN) and deep learning to improve the model's robustness to adversarial examples. It is challenging to evaluate the robustness of this scheme due to a lack of efficient algorithm for attacking kNN classifiers with large k and high-dimensional data. We propose a heuristic attack that allows us to use gradient descent to find adversarial examples for kNN classifiers, and then apply it to attack the DkNN defense as well. Results suggest that our attack is moderately stronger than any naive attack on kNN and significantly outperforms other attacks on DkNN.\",\"PeriodicalId\":125351,\"journal\":{\"name\":\"2019 IEEE Security and Privacy Workshops (SPW)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Security and Privacy Workshops (SPW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPW.2019.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Security and Privacy Workshops (SPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW.2019.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Despite a large amount of attention on adversarial examples, very few works have demonstrated an effective defense against this threat. We examine Deep k-Nearest Neighbor (DkNN), a proposed defense that combines k-Nearest Neighbor (kNN) and deep learning to improve the model's robustness to adversarial examples. It is challenging to evaluate the robustness of this scheme due to a lack of efficient algorithm for attacking kNN classifiers with large k and high-dimensional data. We propose a heuristic attack that allows us to use gradient descent to find adversarial examples for kNN classifiers, and then apply it to attack the DkNN defense as well. Results suggest that our attack is moderately stronger than any naive attack on kNN and significantly outperforms other attacks on DkNN.