基于经验模态分解和半监督学习的脑力负荷多模态识别

Jianhua Zhang, Jianrong Li
{"title":"基于经验模态分解和半监督学习的脑力负荷多模态识别","authors":"Jianhua Zhang, Jianrong Li","doi":"10.1109/CW.2019.00043","DOIUrl":null,"url":null,"abstract":"Real-time monitoring and analysis of human operator's mental workload (MWL) is crucial for development of adaptive/intelligent human-machine cooperative systems in various safety/mission-critical application fields. Although data-driven machine learning (ML) approach has shown promise in MWL recognition, it is usually difficult to acquire sufficient labeled data to train the ML model. This paper proposes semi-supervised extreme learning machines (SS-ELM) for MWL pattern classification using solely a small number of labeled data. The experimental data analysis results are presented to show the effectiveness of the proposed SS-ELM paradigm for the 3-class MWL classification.","PeriodicalId":117409,"journal":{"name":"2019 International Conference on Cyberworlds (CW)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-modal Recognition of Mental Workload Using Empirical Mode Decomposition and Semi-Supervised Learning\",\"authors\":\"Jianhua Zhang, Jianrong Li\",\"doi\":\"10.1109/CW.2019.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time monitoring and analysis of human operator's mental workload (MWL) is crucial for development of adaptive/intelligent human-machine cooperative systems in various safety/mission-critical application fields. Although data-driven machine learning (ML) approach has shown promise in MWL recognition, it is usually difficult to acquire sufficient labeled data to train the ML model. This paper proposes semi-supervised extreme learning machines (SS-ELM) for MWL pattern classification using solely a small number of labeled data. The experimental data analysis results are presented to show the effectiveness of the proposed SS-ELM paradigm for the 3-class MWL classification.\",\"PeriodicalId\":117409,\"journal\":{\"name\":\"2019 International Conference on Cyberworlds (CW)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Cyberworlds (CW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CW.2019.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Cyberworlds (CW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2019.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实时监测和分析操作人员的心理工作负荷(MWL)对于开发各种安全/关键任务应用领域的自适应/智能人机协作系统至关重要。尽管数据驱动机器学习(ML)方法在MWL识别中显示出前景,但通常很难获得足够的标记数据来训练ML模型。本文提出了半监督极限学习机(SS-ELM),用于仅使用少量标记数据的MWL模式分类。实验数据分析结果表明了所提出的SS-ELM范式对3类MWL分类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-modal Recognition of Mental Workload Using Empirical Mode Decomposition and Semi-Supervised Learning
Real-time monitoring and analysis of human operator's mental workload (MWL) is crucial for development of adaptive/intelligent human-machine cooperative systems in various safety/mission-critical application fields. Although data-driven machine learning (ML) approach has shown promise in MWL recognition, it is usually difficult to acquire sufficient labeled data to train the ML model. This paper proposes semi-supervised extreme learning machines (SS-ELM) for MWL pattern classification using solely a small number of labeled data. The experimental data analysis results are presented to show the effectiveness of the proposed SS-ELM paradigm for the 3-class MWL classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG-Based Human Factors Evaluation of Air Traffic Control Operators (ATCOs) for Optimal Training Multi-instance Cancelable Biometric System using Convolutional Neural Network How does Augmented Reality Improve the Play Experience in Current Augmented Reality Enhanced Smartphone Games? Detection of Humanoid Robot Design Preferences Using EEG and Eye Tracker Vulnerability of Adaptive Strategies of Keystroke Dynamics Based Authentication Against Different Attack Types
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1