无限时滞模糊惯性神经网络的镇定

Changqing Long, Guodong Zhang, Junhao Hu
{"title":"无限时滞模糊惯性神经网络的镇定","authors":"Changqing Long, Guodong Zhang, Junhao Hu","doi":"10.1109/ICCSS53909.2021.9721949","DOIUrl":null,"url":null,"abstract":"This paper addresses the global asymptotic stabilization problem for a class of fuzzy inertial neural networks (FINNs) with infinite delays and handles with the FINNs directly by a non-reduced order strategy. By constructing Lyapunov functional and utilizing some analytical skills, new sufficient conditions are derived to assure the stabilization of the considered FINNs under the designed controller. Compared with the common neural networks, we introduce the fuzzy logics, inertial terms, time-varying coefficients and infinite delays into the considered model, which complements and improves on a number of existing publications. At last, two illustrative examples are given to demonstrate the validity of the theoretical outcomes.","PeriodicalId":435816,"journal":{"name":"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization of Fuzzy Inertial Neural Networks with Infinite Delays\",\"authors\":\"Changqing Long, Guodong Zhang, Junhao Hu\",\"doi\":\"10.1109/ICCSS53909.2021.9721949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the global asymptotic stabilization problem for a class of fuzzy inertial neural networks (FINNs) with infinite delays and handles with the FINNs directly by a non-reduced order strategy. By constructing Lyapunov functional and utilizing some analytical skills, new sufficient conditions are derived to assure the stabilization of the considered FINNs under the designed controller. Compared with the common neural networks, we introduce the fuzzy logics, inertial terms, time-varying coefficients and infinite delays into the considered model, which complements and improves on a number of existing publications. At last, two illustrative examples are given to demonstrate the validity of the theoretical outcomes.\",\"PeriodicalId\":435816,\"journal\":{\"name\":\"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSS53909.2021.9721949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSS53909.2021.9721949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有无限延迟的模糊惯性神经网络的全局渐近镇定问题,并采用一种非降阶策略对其进行了直接处理。通过构造Lyapunov泛函并利用一些分析技巧,导出了在所设计控制器下所考虑的finn镇定的新的充分条件。与普通的神经网络相比,我们将模糊逻辑、惯性项、时变系数和无限延迟引入到考虑的模型中,补充和改进了许多现有的文献。最后,通过两个实例验证了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stabilization of Fuzzy Inertial Neural Networks with Infinite Delays
This paper addresses the global asymptotic stabilization problem for a class of fuzzy inertial neural networks (FINNs) with infinite delays and handles with the FINNs directly by a non-reduced order strategy. By constructing Lyapunov functional and utilizing some analytical skills, new sufficient conditions are derived to assure the stabilization of the considered FINNs under the designed controller. Compared with the common neural networks, we introduce the fuzzy logics, inertial terms, time-varying coefficients and infinite delays into the considered model, which complements and improves on a number of existing publications. At last, two illustrative examples are given to demonstrate the validity of the theoretical outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Prediction Model of Key Personnel's Food Crime Based on Stacking Model Fusion A Multidimensional System Architecture Oriented to the Data Space of Manufacturing Enterprises Semi-Supervised Deep Clustering with Soft Membership Affinity Moving Target Shooting Control Policy Based on Deep Reinforcement Learning Prediction of ship fuel consumption based on Elastic network regression model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1