软件定义光网络中云数据中心资源分配的LSTM

Michal Aibin
{"title":"软件定义光网络中云数据中心资源分配的LSTM","authors":"Michal Aibin","doi":"10.1109/UEMCON51285.2020.9298133","DOIUrl":null,"url":null,"abstract":"Nowadays, artificial intelligence provides an excellent opportunity for scientists to improve the efficiency of resource allocation in communication networks. In this paper, we focus on applying two methods: Long-Short Term Memory and Monte Carlo Tree Search, to solve the problem of cloud resource allocation in dynamic, real-time traffic scenarios. We use a framework of Software Defined Elastic Optical Networks and cloud resources available from Amazon Web Services. Results show that the application of Monte Carlo Tree Search and Long-Short Term Memory provides superior performance, which is an excellent opportunity for network operators to achieve better utilization of their networks, with lower operational costs.","PeriodicalId":433609,"journal":{"name":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"LSTM for Cloud Data Centers Resource Allocation in Software-Defined Optical Networks\",\"authors\":\"Michal Aibin\",\"doi\":\"10.1109/UEMCON51285.2020.9298133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, artificial intelligence provides an excellent opportunity for scientists to improve the efficiency of resource allocation in communication networks. In this paper, we focus on applying two methods: Long-Short Term Memory and Monte Carlo Tree Search, to solve the problem of cloud resource allocation in dynamic, real-time traffic scenarios. We use a framework of Software Defined Elastic Optical Networks and cloud resources available from Amazon Web Services. Results show that the application of Monte Carlo Tree Search and Long-Short Term Memory provides superior performance, which is an excellent opportunity for network operators to achieve better utilization of their networks, with lower operational costs.\",\"PeriodicalId\":433609,\"journal\":{\"name\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON51285.2020.9298133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON51285.2020.9298133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

如今,人工智能为科学家提高通信网络资源配置效率提供了绝佳的机会。在本文中,我们重点应用长短期记忆和蒙特卡罗树搜索两种方法来解决动态实时交通场景下的云资源分配问题。我们使用软件定义弹性光网络框架和Amazon Web Services提供的云资源。结果表明,蒙特卡罗树搜索和长短期记忆的应用提供了优越的性能,这为网络运营商提供了一个很好的机会,可以更好地利用他们的网络,降低运营成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LSTM for Cloud Data Centers Resource Allocation in Software-Defined Optical Networks
Nowadays, artificial intelligence provides an excellent opportunity for scientists to improve the efficiency of resource allocation in communication networks. In this paper, we focus on applying two methods: Long-Short Term Memory and Monte Carlo Tree Search, to solve the problem of cloud resource allocation in dynamic, real-time traffic scenarios. We use a framework of Software Defined Elastic Optical Networks and cloud resources available from Amazon Web Services. Results show that the application of Monte Carlo Tree Search and Long-Short Term Memory provides superior performance, which is an excellent opportunity for network operators to achieve better utilization of their networks, with lower operational costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Agile Edge Classification of Ocean Sounds EMG-based Hand Gesture Recognition by Deep Time-frequency Learning for Assisted Living & Rehabilitation A High Security Signature Algorithm Based on Kerberos for REST-style Cloud Storage Service A Comparison of Blockchain-Based Wireless Sensor Network Protocols Computer Vision based License Plate Detection for Automated Vehicle Parking Management System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1