利用广义近似消息传递从噪声量化压缩感知中有效恢复

O. Musa, Gabor Hannak, N. Goertz
{"title":"利用广义近似消息传递从噪声量化压缩感知中有效恢复","authors":"O. Musa, Gabor Hannak, N. Goertz","doi":"10.1109/CAMSAP.2017.8313153","DOIUrl":null,"url":null,"abstract":"Compressed sensing (CS) is a novel technique that allows for stable reconstruction with sampling rate lower than Nyquist rate if the unknown vector is sparse. In many practical applications CS measurements are first scalar quantized and later corrupted in different ways. Reconstruction by conventional techniques on such highly distorted measurements will result in poor accuracy. To address this problem, we use the well established generalized approximate message passing (GAMP) algorithm and tailor it for quantized CS measurements corrupted with noise. We provide the necessary expressions for the nonlinear updates for different noise models, namely the symmetric discrete memoryless channel (SDMC) and the additive white Gaussian noise (AWGN) channel. Numerical results show superiority of the GAMP algorithm compared to conventional reconstruction algorithms in both SDMC and AWGN channels.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient recovery from noisy quantized compressed sensing using generalized approximate message passing\",\"authors\":\"O. Musa, Gabor Hannak, N. Goertz\",\"doi\":\"10.1109/CAMSAP.2017.8313153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressed sensing (CS) is a novel technique that allows for stable reconstruction with sampling rate lower than Nyquist rate if the unknown vector is sparse. In many practical applications CS measurements are first scalar quantized and later corrupted in different ways. Reconstruction by conventional techniques on such highly distorted measurements will result in poor accuracy. To address this problem, we use the well established generalized approximate message passing (GAMP) algorithm and tailor it for quantized CS measurements corrupted with noise. We provide the necessary expressions for the nonlinear updates for different noise models, namely the symmetric discrete memoryless channel (SDMC) and the additive white Gaussian noise (AWGN) channel. Numerical results show superiority of the GAMP algorithm compared to conventional reconstruction algorithms in both SDMC and AWGN channels.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

压缩感知(CS)是一种新的技术,它可以在采样率低于奈奎斯特率的情况下实现未知向量的稳定重构。在许多实际应用中,CS测量首先是标量量子化,然后以不同的方式损坏。在这种高度失真的测量上,用传统技术进行重建将导致精度差。为了解决这个问题,我们使用了完善的广义近似消息传递(GAMP)算法,并对其进行了定制,以适应被噪声破坏的量化CS测量。给出了对称离散无记忆信道(SDMC)和加性高斯白噪声信道(AWGN)两种不同噪声模型的非线性更新的必要表达式。数值结果表明,在SDMC和AWGN信道中,GAMP算法都比传统的重构算法具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient recovery from noisy quantized compressed sensing using generalized approximate message passing
Compressed sensing (CS) is a novel technique that allows for stable reconstruction with sampling rate lower than Nyquist rate if the unknown vector is sparse. In many practical applications CS measurements are first scalar quantized and later corrupted in different ways. Reconstruction by conventional techniques on such highly distorted measurements will result in poor accuracy. To address this problem, we use the well established generalized approximate message passing (GAMP) algorithm and tailor it for quantized CS measurements corrupted with noise. We provide the necessary expressions for the nonlinear updates for different noise models, namely the symmetric discrete memoryless channel (SDMC) and the additive white Gaussian noise (AWGN) channel. Numerical results show superiority of the GAMP algorithm compared to conventional reconstruction algorithms in both SDMC and AWGN channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved DOA estimators using partial relaxation approach Energy efficient transmission in MIMO interference channels with QoS constraints Restricted update sequential matrix diagonalisation for parahermitian matrices Sparse Bayesian learning with dictionary refinement for super-resolution through time L1-PCA signal subspace identification for non-sphered data under the ICA model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1