基于CAN和多线程技术的GD-1柴油机硬件在环仿真平台的开发

Junxi Wang, Hangbo Tang, K.-Q. Zhu, Lin Yang, X.-J. Mao, B. Zhuo
{"title":"基于CAN和多线程技术的GD-1柴油机硬件在环仿真平台的开发","authors":"Junxi Wang, Hangbo Tang, K.-Q. Zhu, Lin Yang, X.-J. Mao, B. Zhuo","doi":"10.1109/ICVES.2005.1563613","DOIUrl":null,"url":null,"abstract":"A new scheme was adopted in the hardware-in-loop (HIL) simulation platform adopted to develop simulation ECU and monitor-control interface. Hardware design: The simulation ECU was developed with the 32-bit single chip MC68376 of MOTOROLA, which converted and sent all necessary parameters for electronically controlled diesel ECU (object ECU); An accurate measurement was achieved to actuator signals with no-contact current sensors. Software design: The high efficiency of assembly language and the convenience of c language were combined to realize simulation ECU control program; The multithread technology was used in PC control program, and there were 3 threads: a monitor-control interface thread, a diesel model thread and a communication thread. Labview was used to develop the monitor-control interface as main thread, and diesel model and communication threads were programmed by C+ and ran in the background as sub threads. Communication: CAN bus communication protocol was adopted and communication programs were developed separately for TouCAN module and USBCAN, communication data is converted with an USBCAN intelligent conversion card and an accurate, reliable and quick communication was achieved between simulation ECU and PC, with baud rate up to 500 kbit/s. This platform has been successfully used to develop HIL system for GD-1 high pressure common rail electronically controlled diesel engine and Delphi EUP (a little changed).","PeriodicalId":443433,"journal":{"name":"IEEE International Conference on Vehicular Electronics and Safety, 2005.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Development of a new hardware-in-loop simulation platform for GD-1 diesel engine based on CAN and multithread technologies\",\"authors\":\"Junxi Wang, Hangbo Tang, K.-Q. Zhu, Lin Yang, X.-J. Mao, B. Zhuo\",\"doi\":\"10.1109/ICVES.2005.1563613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new scheme was adopted in the hardware-in-loop (HIL) simulation platform adopted to develop simulation ECU and monitor-control interface. Hardware design: The simulation ECU was developed with the 32-bit single chip MC68376 of MOTOROLA, which converted and sent all necessary parameters for electronically controlled diesel ECU (object ECU); An accurate measurement was achieved to actuator signals with no-contact current sensors. Software design: The high efficiency of assembly language and the convenience of c language were combined to realize simulation ECU control program; The multithread technology was used in PC control program, and there were 3 threads: a monitor-control interface thread, a diesel model thread and a communication thread. Labview was used to develop the monitor-control interface as main thread, and diesel model and communication threads were programmed by C+ and ran in the background as sub threads. Communication: CAN bus communication protocol was adopted and communication programs were developed separately for TouCAN module and USBCAN, communication data is converted with an USBCAN intelligent conversion card and an accurate, reliable and quick communication was achieved between simulation ECU and PC, with baud rate up to 500 kbit/s. This platform has been successfully used to develop HIL system for GD-1 high pressure common rail electronically controlled diesel engine and Delphi EUP (a little changed).\",\"PeriodicalId\":443433,\"journal\":{\"name\":\"IEEE International Conference on Vehicular Electronics and Safety, 2005.\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Vehicular Electronics and Safety, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVES.2005.1563613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Vehicular Electronics and Safety, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2005.1563613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在硬件在环(HIL)仿真平台上采用了一种新的方案来开发仿真ECU和监控接口。硬件设计:采用摩托罗拉公司的32位单片机MC68376开发仿真ECU,实现电控柴油机ECU(对象ECU)所需参数的转换和发送;采用无接触电流传感器,实现了对致动器信号的精确测量。软件设计:结合汇编语言的高效性和c语言的便捷性实现仿真ECU控制程序;上位机控制程序采用多线程技术,分为3个线程:监控接口线程、柴油机模型线程和通信线程。采用Labview作为主线程开发监控界面,采用c++语言编写柴油机模型和通信线程,作为子线程在后台运行。通信:采用CAN总线通信协议,分别为TouCAN模块和USBCAN模块开发了通信程序,通信数据通过USBCAN智能转换卡进行转换,实现了仿真ECU与PC机之间准确、可靠、快速的通信,波特率高达500kbit /s。该平台已成功应用于GD-1高压共轨电控柴油机和德尔福EUP(稍作改动)的HIL系统开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a new hardware-in-loop simulation platform for GD-1 diesel engine based on CAN and multithread technologies
A new scheme was adopted in the hardware-in-loop (HIL) simulation platform adopted to develop simulation ECU and monitor-control interface. Hardware design: The simulation ECU was developed with the 32-bit single chip MC68376 of MOTOROLA, which converted and sent all necessary parameters for electronically controlled diesel ECU (object ECU); An accurate measurement was achieved to actuator signals with no-contact current sensors. Software design: The high efficiency of assembly language and the convenience of c language were combined to realize simulation ECU control program; The multithread technology was used in PC control program, and there were 3 threads: a monitor-control interface thread, a diesel model thread and a communication thread. Labview was used to develop the monitor-control interface as main thread, and diesel model and communication threads were programmed by C+ and ran in the background as sub threads. Communication: CAN bus communication protocol was adopted and communication programs were developed separately for TouCAN module and USBCAN, communication data is converted with an USBCAN intelligent conversion card and an accurate, reliable and quick communication was achieved between simulation ECU and PC, with baud rate up to 500 kbit/s. This platform has been successfully used to develop HIL system for GD-1 high pressure common rail electronically controlled diesel engine and Delphi EUP (a little changed).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The development and application of the inspecting instrument for the accelerograph driver equipment of the automobile A new STB-TCM coded MC-CDMA systems with MMSE-SOVA based decoding and soft-interference cancellation The research of RF MEMS switch for vehicle-carried radio frequency communication Low profile, low cost and high efficiency phased array for automobile radar and communication systems Modeling and simulation study of the steer by wire system using bond graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1