客户流失预测——零售银行案例研究

Teemu Mutanen, S. Nousiainen, J. Ahola
{"title":"客户流失预测——零售银行案例研究","authors":"Teemu Mutanen, S. Nousiainen, J. Ahola","doi":"10.3233/978-1-60750-633-1-77","DOIUrl":null,"url":null,"abstract":"This work focuses on one of the central topics in customer relationship management (CRM): transfer of valuable customers to a competitor. Customer retention rate has a strong impact on customer lifetime value, and understanding the true value of a possible customer churn will help the company in its customer relationship management. Customer value analysis along with customer churn predictions will help marketing programs target more specific groups of customers. We predict customer churn with logistic regression techniques and analyze the churning and nonchurning customers by using data from a consumer retail banking company. The result of the case study show that using conventional statistical methods to identify possible churners can be successful.","PeriodicalId":438467,"journal":{"name":"Data Mining for Business Applications","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Customer churn prediction - a case study in retail banking\",\"authors\":\"Teemu Mutanen, S. Nousiainen, J. Ahola\",\"doi\":\"10.3233/978-1-60750-633-1-77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work focuses on one of the central topics in customer relationship management (CRM): transfer of valuable customers to a competitor. Customer retention rate has a strong impact on customer lifetime value, and understanding the true value of a possible customer churn will help the company in its customer relationship management. Customer value analysis along with customer churn predictions will help marketing programs target more specific groups of customers. We predict customer churn with logistic regression techniques and analyze the churning and nonchurning customers by using data from a consumer retail banking company. The result of the case study show that using conventional statistical methods to identify possible churners can be successful.\",\"PeriodicalId\":438467,\"journal\":{\"name\":\"Data Mining for Business Applications\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Mining for Business Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/978-1-60750-633-1-77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining for Business Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/978-1-60750-633-1-77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

本研究的重点是客户关系管理(CRM)的核心主题之一:将有价值的客户转移到竞争对手。客户保留率对客户终身价值有很大的影响,了解潜在客户流失的真正价值将有助于公司进行客户关系管理。客户价值分析和客户流失预测将有助于营销计划瞄准更具体的客户群体。本文运用logistic回归技术对客户流失进行预测,并利用某消费零售银行公司的数据对流失客户和非流失客户进行分析。案例研究的结果表明,使用传统的统计方法来识别可能的流失是成功的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Customer churn prediction - a case study in retail banking
This work focuses on one of the central topics in customer relationship management (CRM): transfer of valuable customers to a competitor. Customer retention rate has a strong impact on customer lifetime value, and understanding the true value of a possible customer churn will help the company in its customer relationship management. Customer value analysis along with customer churn predictions will help marketing programs target more specific groups of customers. We predict customer churn with logistic regression techniques and analyze the churning and nonchurning customers by using data from a consumer retail banking company. The result of the case study show that using conventional statistical methods to identify possible churners can be successful.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Customer churn prediction - a case study in retail banking Towards the Generic Framework for Utility Considerations in Data Mining Research Data Mining for Business Applications: Introduction Forecasting Online Auctions using Dynamic Models Interactivity Closes the Gap - Lessons Learned in an Automotive Industry Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1