通过非常稀疏日志深入了解微服务系统异常

Xinrui Jiang, Yicheng Pan, Meng Ma, Ping Wang
{"title":"通过非常稀疏日志深入了解微服务系统异常","authors":"Xinrui Jiang, Yicheng Pan, Meng Ma, Ping Wang","doi":"10.1145/3543507.3583338","DOIUrl":null,"url":null,"abstract":"Intensive monitoring and anomaly diagnosis have become a knotty problem for modern microservice architecture due to the dynamics of service dependency. While most previous studies rely heavily on ample monitoring metrics, we raise a fundamental but always neglected issue - the diagnostic metric integrity problem. This paper solves the problem by proposing MicroCU – a novel approach to diagnose microservice systems using very sparse API logs. We design a structure named dynamic causal curves to portray time-varying service dependencies and a temporal dynamics discovery algorithm based on Granger causal intervals. Our algorithm generates a smoother space of causal curves and designs the concept of causal unimodalization to calibrate the causality infidelities brought by missing metrics. Finally, a path search algorithm on dynamic causality graphs is proposed to pinpoint the root cause. Experiments on commercial system cases show that MicroCU outperforms many state-of-the-art approaches and reflects the superiorities of causal unimodalization to raw metric imputation.","PeriodicalId":296351,"journal":{"name":"Proceedings of the ACM Web Conference 2023","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Look Deep into the Microservice System Anomaly through Very Sparse Logs\",\"authors\":\"Xinrui Jiang, Yicheng Pan, Meng Ma, Ping Wang\",\"doi\":\"10.1145/3543507.3583338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intensive monitoring and anomaly diagnosis have become a knotty problem for modern microservice architecture due to the dynamics of service dependency. While most previous studies rely heavily on ample monitoring metrics, we raise a fundamental but always neglected issue - the diagnostic metric integrity problem. This paper solves the problem by proposing MicroCU – a novel approach to diagnose microservice systems using very sparse API logs. We design a structure named dynamic causal curves to portray time-varying service dependencies and a temporal dynamics discovery algorithm based on Granger causal intervals. Our algorithm generates a smoother space of causal curves and designs the concept of causal unimodalization to calibrate the causality infidelities brought by missing metrics. Finally, a path search algorithm on dynamic causality graphs is proposed to pinpoint the root cause. Experiments on commercial system cases show that MicroCU outperforms many state-of-the-art approaches and reflects the superiorities of causal unimodalization to raw metric imputation.\",\"PeriodicalId\":296351,\"journal\":{\"name\":\"Proceedings of the ACM Web Conference 2023\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Web Conference 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3543507.3583338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Web Conference 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543507.3583338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于服务依赖的动态性,密集监测和异常诊断已成为现代微服务体系结构中的一个棘手问题。虽然大多数先前的研究严重依赖于充足的监测指标,但我们提出了一个基本但总是被忽视的问题-诊断指标完整性问题。本文通过提出MicroCU来解决这个问题,MicroCU是一种利用非常稀疏的API日志来诊断微服务系统的新方法。我们设计了动态因果曲线结构来描述时变的服务依赖关系,并设计了基于格兰杰因果区间的时间动态发现算法。该算法生成了一个平滑的因果曲线空间,并设计了因果单模化的概念来校准缺失度量带来的因果不实度。最后,提出了一种基于动态因果图的路径搜索算法来查找根本原因。商业系统案例的实验表明,MicroCU优于许多最先进的方法,并反映了因果单模化对原始度量推算的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Look Deep into the Microservice System Anomaly through Very Sparse Logs
Intensive monitoring and anomaly diagnosis have become a knotty problem for modern microservice architecture due to the dynamics of service dependency. While most previous studies rely heavily on ample monitoring metrics, we raise a fundamental but always neglected issue - the diagnostic metric integrity problem. This paper solves the problem by proposing MicroCU – a novel approach to diagnose microservice systems using very sparse API logs. We design a structure named dynamic causal curves to portray time-varying service dependencies and a temporal dynamics discovery algorithm based on Granger causal intervals. Our algorithm generates a smoother space of causal curves and designs the concept of causal unimodalization to calibrate the causality infidelities brought by missing metrics. Finally, a path search algorithm on dynamic causality graphs is proposed to pinpoint the root cause. Experiments on commercial system cases show that MicroCU outperforms many state-of-the-art approaches and reflects the superiorities of causal unimodalization to raw metric imputation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CurvDrop: A Ricci Curvature Based Approach to Prevent Graph Neural Networks from Over-Smoothing and Over-Squashing Learning to Simulate Crowd Trajectories with Graph Networks Word Sense Disambiguation by Refining Target Word Embedding Curriculum Graph Poisoning Optimizing Guided Traversal for Fast Learned Sparse Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1