改进的增强算法在基于云模型的神经网络中的应用

Xueyun Ji
{"title":"改进的增强算法在基于云模型的神经网络中的应用","authors":"Xueyun Ji","doi":"10.1109/EDT.2010.5496450","DOIUrl":null,"url":null,"abstract":"An effective ensemble should consist of a set of networks that are both accurate and diverse. Ensemble learning is an algorithm to improve the generalization ability of the unstable classifier. We propose an improved boosting algorithm based on cloud model for constructing neural network ensemble, where cloud model is used to classify trained networks according to similarity and optimally select the most accurate individual network from each cluster to make up the ensemble. Empirical studies on regression of typical datasets showed that this approach yields significantly smaller ensemble achieving better performance than other traditional ones such as Bagging and Boosting. The bias variance decomposition of the predictive error shows that the success of the proposed approach may lie in its properly tuning the bias/variance trade-off to reduce the prediction error.","PeriodicalId":325767,"journal":{"name":"2010 International Conference on E-Health Networking Digital Ecosystems and Technologies (EDT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The application of improved boosting algorithm in neural network based on cloud model\",\"authors\":\"Xueyun Ji\",\"doi\":\"10.1109/EDT.2010.5496450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An effective ensemble should consist of a set of networks that are both accurate and diverse. Ensemble learning is an algorithm to improve the generalization ability of the unstable classifier. We propose an improved boosting algorithm based on cloud model for constructing neural network ensemble, where cloud model is used to classify trained networks according to similarity and optimally select the most accurate individual network from each cluster to make up the ensemble. Empirical studies on regression of typical datasets showed that this approach yields significantly smaller ensemble achieving better performance than other traditional ones such as Bagging and Boosting. The bias variance decomposition of the predictive error shows that the success of the proposed approach may lie in its properly tuning the bias/variance trade-off to reduce the prediction error.\",\"PeriodicalId\":325767,\"journal\":{\"name\":\"2010 International Conference on E-Health Networking Digital Ecosystems and Technologies (EDT)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on E-Health Networking Digital Ecosystems and Technologies (EDT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDT.2010.5496450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on E-Health Networking Digital Ecosystems and Technologies (EDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDT.2010.5496450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

一个有效的集合应该由一组既准确又多样化的网络组成。集成学习是一种提高不稳定分类器泛化能力的算法。本文提出了一种改进的基于云模型的神经网络集成增强算法,利用云模型对训练后的网络进行相似性分类,并从每个聚类中最优地选择最准确的单个网络构成神经网络集成。对典型数据集回归的实证研究表明,该方法产生的集合明显小于Bagging和Boosting等传统方法,并且具有更好的性能。预测误差的偏差方差分解表明,该方法的成功可能在于适当地调整偏差/方差权衡以减小预测误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The application of improved boosting algorithm in neural network based on cloud model
An effective ensemble should consist of a set of networks that are both accurate and diverse. Ensemble learning is an algorithm to improve the generalization ability of the unstable classifier. We propose an improved boosting algorithm based on cloud model for constructing neural network ensemble, where cloud model is used to classify trained networks according to similarity and optimally select the most accurate individual network from each cluster to make up the ensemble. Empirical studies on regression of typical datasets showed that this approach yields significantly smaller ensemble achieving better performance than other traditional ones such as Bagging and Boosting. The bias variance decomposition of the predictive error shows that the success of the proposed approach may lie in its properly tuning the bias/variance trade-off to reduce the prediction error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrating mobility, multi-homing and security in universal network Notice of RetractionAgent-construction government investment project management new mode The building of harmony project management theoretical system Improvement of the mobile e-health wireless networks based on the IPv6 protocol Research of physical condition monitoring system for the elderly based on Zigbee wireless network technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1