线性和隆起回归中截距的收缩估计

S. Jaroszewicz, Krzysztof Rudas
{"title":"线性和隆起回归中截距的收缩估计","authors":"S. Jaroszewicz, Krzysztof Rudas","doi":"10.7561/sacs.2023.1.35","DOIUrl":null,"url":null,"abstract":"Shrinkage estimators modify classical statistical estimators by scaling them towards zero in order to decrease their prediction error. We propose shrinkage estimators for linear regression models which explicitly take into account the presence of the intercept term, shrinking it independently from other coefficients. This is different from current shrinkage estimators, which treat the intercept just as an ordinary regression coefficient. We demonstrate that the proposed approach brings systematic improvements in prediction accuracy if the true intercept term differs in magnitude from other coefficients, which is often the case in practice. We then generalize the approach to uplift regression which aims to predict the causal effect of a specific action on an individual with given characteristics. In this case the proposed estimators improve prediction accuracy over previously proposed shrinkage estimators and achieve impressive performance gains over original models.","PeriodicalId":394919,"journal":{"name":"Sci. Ann. Comput. Sci.","volume":"365 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shrinkage Estimators for the Intercept in Linear and Uplift Regression\",\"authors\":\"S. Jaroszewicz, Krzysztof Rudas\",\"doi\":\"10.7561/sacs.2023.1.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shrinkage estimators modify classical statistical estimators by scaling them towards zero in order to decrease their prediction error. We propose shrinkage estimators for linear regression models which explicitly take into account the presence of the intercept term, shrinking it independently from other coefficients. This is different from current shrinkage estimators, which treat the intercept just as an ordinary regression coefficient. We demonstrate that the proposed approach brings systematic improvements in prediction accuracy if the true intercept term differs in magnitude from other coefficients, which is often the case in practice. We then generalize the approach to uplift regression which aims to predict the causal effect of a specific action on an individual with given characteristics. In this case the proposed estimators improve prediction accuracy over previously proposed shrinkage estimators and achieve impressive performance gains over original models.\",\"PeriodicalId\":394919,\"journal\":{\"name\":\"Sci. Ann. Comput. Sci.\",\"volume\":\"365 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sci. Ann. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7561/sacs.2023.1.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sci. Ann. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7561/sacs.2023.1.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

收缩估计器通过将经典统计估计器缩放到零来修改它们,以减少它们的预测误差。我们提出了线性回归模型的收缩估计器,该模型明确考虑了截距项的存在,使其独立于其他系数进行收缩。这与当前的收缩估计器不同,后者将截距视为普通回归系数。我们证明,如果真实截距项与其他系数的大小不同,则所提出的方法可以系统地提高预测精度,这在实践中经常出现。然后,我们将方法推广到提升回归,其目的是预测特定行为对具有给定特征的个体的因果效应。在这种情况下,所提出的估计器比先前提出的收缩估计器提高了预测精度,并且比原始模型获得了令人印象深刻的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shrinkage Estimators for the Intercept in Linear and Uplift Regression
Shrinkage estimators modify classical statistical estimators by scaling them towards zero in order to decrease their prediction error. We propose shrinkage estimators for linear regression models which explicitly take into account the presence of the intercept term, shrinking it independently from other coefficients. This is different from current shrinkage estimators, which treat the intercept just as an ordinary regression coefficient. We demonstrate that the proposed approach brings systematic improvements in prediction accuracy if the true intercept term differs in magnitude from other coefficients, which is often the case in practice. We then generalize the approach to uplift regression which aims to predict the causal effect of a specific action on an individual with given characteristics. In this case the proposed estimators improve prediction accuracy over previously proposed shrinkage estimators and achieve impressive performance gains over original models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Describing weighted safety with weighted LTL over product omega-valuation monoids On Nirmala Indices of Some Hex-derived Networks of Type Three and Their Subdivision Networks Shrinkage Estimators for the Intercept in Linear and Uplift Regression A Teacher of Great Strengths Maximal Existential and Universal Width
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1