封闭系统的量子力学

J. Hartle
{"title":"封闭系统的量子力学","authors":"J. Hartle","doi":"10.1017/cbo9780511628863.013","DOIUrl":null,"url":null,"abstract":"A pedagogical introduction is given to the quantum mechanics of closed systems, most generally the universe as a whole. Quantum mechanics aims at predicting the probabilities of alternative coarse-grained time histories of a closed system. Not every set of alternative coarse-grained histories that can be described may be consistently assigned probabilities because of quantum mechanical interference between individual histories of the set. In the quantum mechanics of closed systems, containing both observer and observed, probabilities are assigned to those sets of alternative histories for which there is negligible interference between individual histories as a consequence of the system's initial condition and dynamics. Such sets of histories are said to decohere. Typical mechanisms of decoherence that are widespread in our universe are illustrated. Copenhagen quantum mechanics is an approximation to the more general quantum framework of closed subsystems. It is appropriate when there is an approximately isolated subsystem that is a participant in a measurement situation in which (among other things) the decoherence of alternative registrations of the apparatus can be idealized as exact. Since the quantum mechanics of closed systems does not posit the existence of the quasiclassical domain of everyday experience, the domain of the approximate aplicability of classical physics must be explained. We describe how a quasiclassical domain described by averages of densities of approximately conserved quantities could be an emergent feature of an initial condition of the universe that implies the approximate classical behavior of spacetime on accessible scales.","PeriodicalId":416124,"journal":{"name":"The Quantum Universe","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"The Quantum Mechanics of Closed Systems\",\"authors\":\"J. Hartle\",\"doi\":\"10.1017/cbo9780511628863.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A pedagogical introduction is given to the quantum mechanics of closed systems, most generally the universe as a whole. Quantum mechanics aims at predicting the probabilities of alternative coarse-grained time histories of a closed system. Not every set of alternative coarse-grained histories that can be described may be consistently assigned probabilities because of quantum mechanical interference between individual histories of the set. In the quantum mechanics of closed systems, containing both observer and observed, probabilities are assigned to those sets of alternative histories for which there is negligible interference between individual histories as a consequence of the system's initial condition and dynamics. Such sets of histories are said to decohere. Typical mechanisms of decoherence that are widespread in our universe are illustrated. Copenhagen quantum mechanics is an approximation to the more general quantum framework of closed subsystems. It is appropriate when there is an approximately isolated subsystem that is a participant in a measurement situation in which (among other things) the decoherence of alternative registrations of the apparatus can be idealized as exact. Since the quantum mechanics of closed systems does not posit the existence of the quasiclassical domain of everyday experience, the domain of the approximate aplicability of classical physics must be explained. We describe how a quasiclassical domain described by averages of densities of approximately conserved quantities could be an emergent feature of an initial condition of the universe that implies the approximate classical behavior of spacetime on accessible scales.\",\"PeriodicalId\":416124,\"journal\":{\"name\":\"The Quantum Universe\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Quantum Universe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/cbo9780511628863.013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Quantum Universe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/cbo9780511628863.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

一个教学的介绍是给封闭系统的量子力学,最一般的宇宙作为一个整体。量子力学的目的是预测一个封闭系统的可选粗粒度时间历史的概率。由于量子力学在个体历史之间的干扰,并不是每一组可以被描述的可选的粗粒度历史都可以被一致地分配概率。在包含观察者和被观察者的封闭系统的量子力学中,概率被分配给那些由于系统的初始条件和动力学而在个体历史之间存在可忽略的干扰的可选历史集。这样的历史集被称为退相干。说明了在我们的宇宙中广泛存在的典型退相干机制。哥本哈根量子力学近似于封闭子系统的更一般的量子框架。当有一个近似孤立的子系统作为测量情况的参与者时,它是合适的,在这种情况下(除其他事项外)仪器的备选注册的退相干可以理想化为精确的。既然封闭系统的量子力学没有假定日常经验的准经典领域的存在,那么经典物理学的近似适用性领域必须得到解释。我们描述了由近似守恒量的密度平均值描述的准经典域如何成为宇宙初始条件的一个紧急特征,该初始条件暗示了在可达尺度上时空的近似经典行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Quantum Mechanics of Closed Systems
A pedagogical introduction is given to the quantum mechanics of closed systems, most generally the universe as a whole. Quantum mechanics aims at predicting the probabilities of alternative coarse-grained time histories of a closed system. Not every set of alternative coarse-grained histories that can be described may be consistently assigned probabilities because of quantum mechanical interference between individual histories of the set. In the quantum mechanics of closed systems, containing both observer and observed, probabilities are assigned to those sets of alternative histories for which there is negligible interference between individual histories as a consequence of the system's initial condition and dynamics. Such sets of histories are said to decohere. Typical mechanisms of decoherence that are widespread in our universe are illustrated. Copenhagen quantum mechanics is an approximation to the more general quantum framework of closed subsystems. It is appropriate when there is an approximately isolated subsystem that is a participant in a measurement situation in which (among other things) the decoherence of alternative registrations of the apparatus can be idealized as exact. Since the quantum mechanics of closed systems does not posit the existence of the quasiclassical domain of everyday experience, the domain of the approximate aplicability of classical physics must be explained. We describe how a quasiclassical domain described by averages of densities of approximately conserved quantities could be an emergent feature of an initial condition of the universe that implies the approximate classical behavior of spacetime on accessible scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FRONT MATTER Are We Typical? The Physics of ‘Now’ BACK MATTER The Impact of Cosmology on Quantum Mechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1