超低能耗应用的能量恢复时钟方案和触发器

M. Cooke, H. Mahmoodi, K. Roy
{"title":"超低能耗应用的能量恢复时钟方案和触发器","authors":"M. Cooke, H. Mahmoodi, K. Roy","doi":"10.1109/LPE.2003.1231835","DOIUrl":null,"url":null,"abstract":"A significant fraction of the total power in highly synchronous systems is dissipated over clock networks. Hence, low-power clocking schemes would be promising approaches for future designs. We propose four novel energy recovery flip-flops that enable energy recovery from the clock network, resulting in significant energy savings. The proposed flip-flops operate with a single-phase sinusoidal clock, which can be generated with high efficiency. Based on the simulation results using TSMC 0.25 /spl mu/m CMOS process technology, at a frequency of 200 MHz, the proposed flip-flops exhibit more than 80% delay reduction, power reduction of up to 46%, and area reduction of up to 77%, as compared to the conventional energy recovery flip-flop. We implemented 1024 proposed energy recovery flip-flops through an H-tree clock network driven by a resonant clock-generator that generates a sinusoidal clock. Results show a power reduction of 90% on the clock-tree and total power savings of up to 83% as compared to the same implementation using the conventional square-wave clocking scheme and flip-flops.","PeriodicalId":355883,"journal":{"name":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Energy recovery clocking scheme and flip-flops for ultra low-energy applications\",\"authors\":\"M. Cooke, H. Mahmoodi, K. Roy\",\"doi\":\"10.1109/LPE.2003.1231835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A significant fraction of the total power in highly synchronous systems is dissipated over clock networks. Hence, low-power clocking schemes would be promising approaches for future designs. We propose four novel energy recovery flip-flops that enable energy recovery from the clock network, resulting in significant energy savings. The proposed flip-flops operate with a single-phase sinusoidal clock, which can be generated with high efficiency. Based on the simulation results using TSMC 0.25 /spl mu/m CMOS process technology, at a frequency of 200 MHz, the proposed flip-flops exhibit more than 80% delay reduction, power reduction of up to 46%, and area reduction of up to 77%, as compared to the conventional energy recovery flip-flop. We implemented 1024 proposed energy recovery flip-flops through an H-tree clock network driven by a resonant clock-generator that generates a sinusoidal clock. Results show a power reduction of 90% on the clock-tree and total power savings of up to 83% as compared to the same implementation using the conventional square-wave clocking scheme and flip-flops.\",\"PeriodicalId\":355883,\"journal\":{\"name\":\"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LPE.2003.1231835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LPE.2003.1231835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

在高度同步的系统中,总功率的很大一部分是在时钟网络上耗散的。因此,低功耗时钟方案将是未来设计的有希望的方法。我们提出了四种新颖的能量恢复触发器,可以从时钟网络中恢复能量,从而显著节省能源。所提出的触发器采用单相正弦时钟工作,产生效率高。基于采用台积电0.25 /spl μ m CMOS工艺技术的仿真结果,在200 MHz频率下,与传统的能量回收触发器相比,所提出的触发器延迟降低80%以上,功耗降低46%,面积减少77%。我们通过一个h树时钟网络实现了1024个提议的能量恢复触发器,该网络由一个产生正弦时钟的谐振时钟发生器驱动。结果表明,与使用传统方波时钟方案和触发器的相同实现相比,时钟树的功耗降低了90%,总功耗节省高达83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy recovery clocking scheme and flip-flops for ultra low-energy applications
A significant fraction of the total power in highly synchronous systems is dissipated over clock networks. Hence, low-power clocking schemes would be promising approaches for future designs. We propose four novel energy recovery flip-flops that enable energy recovery from the clock network, resulting in significant energy savings. The proposed flip-flops operate with a single-phase sinusoidal clock, which can be generated with high efficiency. Based on the simulation results using TSMC 0.25 /spl mu/m CMOS process technology, at a frequency of 200 MHz, the proposed flip-flops exhibit more than 80% delay reduction, power reduction of up to 46%, and area reduction of up to 77%, as compared to the conventional energy recovery flip-flop. We implemented 1024 proposed energy recovery flip-flops through an H-tree clock network driven by a resonant clock-generator that generates a sinusoidal clock. Results show a power reduction of 90% on the clock-tree and total power savings of up to 83% as compared to the same implementation using the conventional square-wave clocking scheme and flip-flops.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voltage scheduling under unpredictabilities: a risk management paradigm [logic design] Uncertainty-based scheduling: energy-efficient ordering for tasks with variable execution time [processor scheduling] Level conversion for dual-supply systems [low power logic IC design] A selective filter-bank TLB system [embedded processor MMU for low power] A semi-custom voltage-island technique and its application to high-speed serial links [CMOS active power reduction]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1