Olayinka Tehinse, Weixing Chen, Karina Chevil, E. Gamboa, Lyndon Lamborn
{"title":"平均载荷压力波动对钢管裂纹扩展行为的影响","authors":"Olayinka Tehinse, Weixing Chen, Karina Chevil, E. Gamboa, Lyndon Lamborn","doi":"10.1115/IPC2018-78720","DOIUrl":null,"url":null,"abstract":"Internal pressure fluctuations during pipeline operations could contribute to crack growth in steel pipelines. These pressure fluctuations create a variable amplitude loading condition with large amplitude cycles at near-zero stress ratio, R (minimum stress / maximum stress) and small amplitude cycles (minor cycles) at near +1 R ratio which can both affect crack propagation. Mean stresses fluctuate with pressure due to fluid friction losses proportional to the distance from the pump/compressor station. A deeper understanding of mean stress sensitivity on crack growth rate in steel pipelines is sought. The aim of this research is to retard crack growth in pipelines by prescribing pressure fluctuations, thus controlling mean stress effects on imperfection growth in steel pipelines under a near neutral pH environment. This study shows that prescriptive mean load pressure fluctuations can be used to reduce crack growth rates in steel pipelines, thus expanding pipeline integrity management methods.","PeriodicalId":273758,"journal":{"name":"Volume 1: Pipeline and Facilities Integrity","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Mean Load Pressure Fluctuations on Crack Growth Behavior in Steel Pipelines\",\"authors\":\"Olayinka Tehinse, Weixing Chen, Karina Chevil, E. Gamboa, Lyndon Lamborn\",\"doi\":\"10.1115/IPC2018-78720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internal pressure fluctuations during pipeline operations could contribute to crack growth in steel pipelines. These pressure fluctuations create a variable amplitude loading condition with large amplitude cycles at near-zero stress ratio, R (minimum stress / maximum stress) and small amplitude cycles (minor cycles) at near +1 R ratio which can both affect crack propagation. Mean stresses fluctuate with pressure due to fluid friction losses proportional to the distance from the pump/compressor station. A deeper understanding of mean stress sensitivity on crack growth rate in steel pipelines is sought. The aim of this research is to retard crack growth in pipelines by prescribing pressure fluctuations, thus controlling mean stress effects on imperfection growth in steel pipelines under a near neutral pH environment. This study shows that prescriptive mean load pressure fluctuations can be used to reduce crack growth rates in steel pipelines, thus expanding pipeline integrity management methods.\",\"PeriodicalId\":273758,\"journal\":{\"name\":\"Volume 1: Pipeline and Facilities Integrity\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Pipeline and Facilities Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IPC2018-78720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Pipeline and Facilities Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IPC2018-78720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of Mean Load Pressure Fluctuations on Crack Growth Behavior in Steel Pipelines
Internal pressure fluctuations during pipeline operations could contribute to crack growth in steel pipelines. These pressure fluctuations create a variable amplitude loading condition with large amplitude cycles at near-zero stress ratio, R (minimum stress / maximum stress) and small amplitude cycles (minor cycles) at near +1 R ratio which can both affect crack propagation. Mean stresses fluctuate with pressure due to fluid friction losses proportional to the distance from the pump/compressor station. A deeper understanding of mean stress sensitivity on crack growth rate in steel pipelines is sought. The aim of this research is to retard crack growth in pipelines by prescribing pressure fluctuations, thus controlling mean stress effects on imperfection growth in steel pipelines under a near neutral pH environment. This study shows that prescriptive mean load pressure fluctuations can be used to reduce crack growth rates in steel pipelines, thus expanding pipeline integrity management methods.