基于粗糙集理论的时空模板发现

Sanchita Mal-Sarkar, I. Sikder, V. Konangi
{"title":"基于粗糙集理论的时空模板发现","authors":"Sanchita Mal-Sarkar, I. Sikder, V. Konangi","doi":"10.1109/ICCITECHN.2010.5723833","DOIUrl":null,"url":null,"abstract":"Real-time stream data is characterized by spatial and temporal variability and is subject to unbounded or constantly evolving entities. The challenge is how to aggregate these unbounded data streams at different spaces and times to provide effective decisions making in real-time. This paper proposes a rough set-based sliding window framework for stream data aggregation. Based on current data streams, it identifies interesting spatio-temporal patterns, and generates rough set If … Then decision rules. Proposed formalism has been tested on sea surface temperature data from NOAA's TAO/TRITON project. Such a pattern-based data aggregation scheme has the potential to significantly reduce data communications in decision making.","PeriodicalId":149135,"journal":{"name":"2010 13th International Conference on Computer and Information Technology (ICCIT)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatio-temporal template discovery using rough set theory\",\"authors\":\"Sanchita Mal-Sarkar, I. Sikder, V. Konangi\",\"doi\":\"10.1109/ICCITECHN.2010.5723833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time stream data is characterized by spatial and temporal variability and is subject to unbounded or constantly evolving entities. The challenge is how to aggregate these unbounded data streams at different spaces and times to provide effective decisions making in real-time. This paper proposes a rough set-based sliding window framework for stream data aggregation. Based on current data streams, it identifies interesting spatio-temporal patterns, and generates rough set If … Then decision rules. Proposed formalism has been tested on sea surface temperature data from NOAA's TAO/TRITON project. Such a pattern-based data aggregation scheme has the potential to significantly reduce data communications in decision making.\",\"PeriodicalId\":149135,\"journal\":{\"name\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2010.5723833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2010.5723833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

实时流数据具有空间和时间的可变性,并且受制于无界或不断发展的实体。挑战在于如何在不同的空间和时间聚合这些无界数据流,以提供有效的实时决策。提出了一种基于粗糙集的流数据聚合滑动窗口框架。基于当前数据流,识别出感兴趣的时空模式,生成粗糙集If…Then决策规则。提出的形式已经在NOAA的TAO/TRITON项目的海面温度数据上进行了测试。这种基于模式的数据聚合方案有可能显著减少决策中的数据通信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatio-temporal template discovery using rough set theory
Real-time stream data is characterized by spatial and temporal variability and is subject to unbounded or constantly evolving entities. The challenge is how to aggregate these unbounded data streams at different spaces and times to provide effective decisions making in real-time. This paper proposes a rough set-based sliding window framework for stream data aggregation. Based on current data streams, it identifies interesting spatio-temporal patterns, and generates rough set If … Then decision rules. Proposed formalism has been tested on sea surface temperature data from NOAA's TAO/TRITON project. Such a pattern-based data aggregation scheme has the potential to significantly reduce data communications in decision making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bivariate gamma distribution: A plausible solution for joint distribution of packet arrival and their sizes On the design of quaternary comparators Optimization technique for configuring IEEE 802.11b access point parameters to improve VoIP performance A multidimensional partitioning scheme for developing English to Bangla dictionary A context free grammar and its predictive parser for bangla grammar recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1