{"title":"南极边缘冰带海冰强度从冻结到融化的发展","authors":"F. Paul, T. Mielke, R. Audh, D. Lupascu","doi":"10.4995/yic2021.2021.12249","DOIUrl":null,"url":null,"abstract":"Sea ice growth in the Marginal Ice Zone of the Antarctic is one of the largest annual changes on earth with a huge impact on the global climate and ecology system. The principles of sea ice growth and melting in the MIZ of the Antarctic is yet not as well researched as its polar counterpart in the north.For this study, pancake ice, consolidated ice and floe ice were analyzed with a compression test in July, October and November 2019 in the marginal ice zone of the Antarctic. Newly formed pancake ice in July showed the highest compressive strength in the bottom layer (3 MPa), whereas consolidated ice was strongest at the top (5 MPa). Consolidated ice in October and November had the highest compressive strength in a middle layer with up to 13.5 MPa, the maximum strength at the top was 3 MPa. Floe ice, consisting of destroyed pack ice, did not show a clear strength development over sea ice depth.","PeriodicalId":406819,"journal":{"name":"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sea ice strength development from freezing to melting in the Antarctic marginal ice zone\",\"authors\":\"F. Paul, T. Mielke, R. Audh, D. Lupascu\",\"doi\":\"10.4995/yic2021.2021.12249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sea ice growth in the Marginal Ice Zone of the Antarctic is one of the largest annual changes on earth with a huge impact on the global climate and ecology system. The principles of sea ice growth and melting in the MIZ of the Antarctic is yet not as well researched as its polar counterpart in the north.For this study, pancake ice, consolidated ice and floe ice were analyzed with a compression test in July, October and November 2019 in the marginal ice zone of the Antarctic. Newly formed pancake ice in July showed the highest compressive strength in the bottom layer (3 MPa), whereas consolidated ice was strongest at the top (5 MPa). Consolidated ice in October and November had the highest compressive strength in a middle layer with up to 13.5 MPa, the maximum strength at the top was 3 MPa. Floe ice, consisting of destroyed pack ice, did not show a clear strength development over sea ice depth.\",\"PeriodicalId\":406819,\"journal\":{\"name\":\"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/yic2021.2021.12249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/yic2021.2021.12249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sea ice strength development from freezing to melting in the Antarctic marginal ice zone
Sea ice growth in the Marginal Ice Zone of the Antarctic is one of the largest annual changes on earth with a huge impact on the global climate and ecology system. The principles of sea ice growth and melting in the MIZ of the Antarctic is yet not as well researched as its polar counterpart in the north.For this study, pancake ice, consolidated ice and floe ice were analyzed with a compression test in July, October and November 2019 in the marginal ice zone of the Antarctic. Newly formed pancake ice in July showed the highest compressive strength in the bottom layer (3 MPa), whereas consolidated ice was strongest at the top (5 MPa). Consolidated ice in October and November had the highest compressive strength in a middle layer with up to 13.5 MPa, the maximum strength at the top was 3 MPa. Floe ice, consisting of destroyed pack ice, did not show a clear strength development over sea ice depth.