利用增量调度器进行人工探索任务调度

J. Jaap, S. Phillips
{"title":"利用增量调度器进行人工探索任务调度","authors":"J. Jaap, S. Phillips","doi":"10.1109/AERO.2005.1559711","DOIUrl":null,"url":null,"abstract":"As humankind embarks on longer space missions farther from home, the requirements and environments for scheduling the activities performed on these missions are changing. As we begin to prepare for these missions it is appropriate to evaluate the merits and applicability of the different types of scheduling engines. Scheduling engines temporally arrange tasks onto a timeline so that all constraints and objectives are met and resources are not overbooked. Scheduling engines used to schedule space missions fall into three general categories: batch, mixed-initiative, and incremental. This paper presents an assessment of the engine types, a discussion of the impact of human exploration of the moon and Mars on planning and scheduling, and the applicability of the different types of scheduling engines. This paper pursues the hypothesis that incremental scheduling engines may have a place in the new environment; they have the potential to reduce cost, to improve the satisfaction of those who execute or benefit from a particular timeline (the customers), and to allow astronauts to plan their own tasks","PeriodicalId":117223,"journal":{"name":"2005 IEEE Aerospace Conference","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On using an incremental scheduler for human exploration task scheduling\",\"authors\":\"J. Jaap, S. Phillips\",\"doi\":\"10.1109/AERO.2005.1559711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As humankind embarks on longer space missions farther from home, the requirements and environments for scheduling the activities performed on these missions are changing. As we begin to prepare for these missions it is appropriate to evaluate the merits and applicability of the different types of scheduling engines. Scheduling engines temporally arrange tasks onto a timeline so that all constraints and objectives are met and resources are not overbooked. Scheduling engines used to schedule space missions fall into three general categories: batch, mixed-initiative, and incremental. This paper presents an assessment of the engine types, a discussion of the impact of human exploration of the moon and Mars on planning and scheduling, and the applicability of the different types of scheduling engines. This paper pursues the hypothesis that incremental scheduling engines may have a place in the new environment; they have the potential to reduce cost, to improve the satisfaction of those who execute or benefit from a particular timeline (the customers), and to allow astronauts to plan their own tasks\",\"PeriodicalId\":117223,\"journal\":{\"name\":\"2005 IEEE Aerospace Conference\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2005.1559711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2005.1559711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随着人类开始在离家更远的地方进行更长时间的太空任务,在这些任务中安排活动的要求和环境正在发生变化。当我们开始为这些任务做准备时,评估不同类型的调度引擎的优点和适用性是适当的。调度引擎将任务临时安排到时间线上,以便满足所有约束和目标,并且资源不会被超额预定。用于空间任务调度的调度引擎分为三类:批处理、混合主动和增量。本文对发动机类型进行了评估,讨论了人类探索月球和火星对计划和调度的影响,以及不同类型调度引擎的适用性。本文提出了增量调度引擎在新环境中占有一席之地的假设;它们有可能降低成本,提高执行者(客户)的满意度或从特定时间表中受益,并允许宇航员计划自己的任务
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On using an incremental scheduler for human exploration task scheduling
As humankind embarks on longer space missions farther from home, the requirements and environments for scheduling the activities performed on these missions are changing. As we begin to prepare for these missions it is appropriate to evaluate the merits and applicability of the different types of scheduling engines. Scheduling engines temporally arrange tasks onto a timeline so that all constraints and objectives are met and resources are not overbooked. Scheduling engines used to schedule space missions fall into three general categories: batch, mixed-initiative, and incremental. This paper presents an assessment of the engine types, a discussion of the impact of human exploration of the moon and Mars on planning and scheduling, and the applicability of the different types of scheduling engines. This paper pursues the hypothesis that incremental scheduling engines may have a place in the new environment; they have the potential to reduce cost, to improve the satisfaction of those who execute or benefit from a particular timeline (the customers), and to allow astronauts to plan their own tasks
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Material simulation-based electronic device prognosis Telecommunication considerations for Jupiter icy moons orbiter (JIMO) Architecting industry for responsive space Distributed health monitoring for aero-engines on the GRID: DAME CMOS Compatible SOI MESFETs for Extreme Environment Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1