基于基因功能聚类的基因本体注释预测

M. Tagliasacchi, Roberto Sarati, M. Masseroli
{"title":"基于基因功能聚类的基因本体注释预测","authors":"M. Tagliasacchi, Roberto Sarati, M. Masseroli","doi":"10.1109/BIBE.2010.69","DOIUrl":null,"url":null,"abstract":"We propose an algorithm that predicts potentially missing Gene Ontology annotations, in order to speed up the time-consuming annotation curation process. The proposed method extends a previous work based on the singular value decomposition of the gene-term annotation matrix and incorporates gene clustering, based on gene functional similarity computed by means of the Gene Ontology annotations. We tested the prediction method by performing K-fold cross-validation on the genomes of two organisms, Saccharomyces cerevisiae (SGD) and Drosophila melanogaster (FlyBase).","PeriodicalId":330904,"journal":{"name":"2010 IEEE International Conference on BioInformatics and BioEngineering","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prediction of Gene Ontology Annotations Based on Gene Functional Clustering\",\"authors\":\"M. Tagliasacchi, Roberto Sarati, M. Masseroli\",\"doi\":\"10.1109/BIBE.2010.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an algorithm that predicts potentially missing Gene Ontology annotations, in order to speed up the time-consuming annotation curation process. The proposed method extends a previous work based on the singular value decomposition of the gene-term annotation matrix and incorporates gene clustering, based on gene functional similarity computed by means of the Gene Ontology annotations. We tested the prediction method by performing K-fold cross-validation on the genomes of two organisms, Saccharomyces cerevisiae (SGD) and Drosophila melanogaster (FlyBase).\",\"PeriodicalId\":330904,\"journal\":{\"name\":\"2010 IEEE International Conference on BioInformatics and BioEngineering\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on BioInformatics and BioEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2010.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on BioInformatics and BioEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2010.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种预测潜在缺失的基因本体注释的算法,以加快耗时的注释管理过程。该方法扩展了先前基于基因术语注释矩阵奇异值分解的工作,并结合了基于基因本体注释计算的基因功能相似度的基因聚类。我们通过对酿酒酵母(Saccharomyces cerevisiae, SGD)和黑腹果蝇(Drosophila melanogaster, FlyBase)两种生物的基因组进行K-fold交叉验证来测试预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Gene Ontology Annotations Based on Gene Functional Clustering
We propose an algorithm that predicts potentially missing Gene Ontology annotations, in order to speed up the time-consuming annotation curation process. The proposed method extends a previous work based on the singular value decomposition of the gene-term annotation matrix and incorporates gene clustering, based on gene functional similarity computed by means of the Gene Ontology annotations. We tested the prediction method by performing K-fold cross-validation on the genomes of two organisms, Saccharomyces cerevisiae (SGD) and Drosophila melanogaster (FlyBase).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment of the Binding Characteristics of Human Immunodeficiency Virus Type 1 Glycoprotein120 and Host Cluster of Differentiation4 Using Digital Signal Processing Detection of Mild Cognitive Impairment Using Image Differences and Clinical Features Quantification and Analysis of Combination Drug Synergy in High-Throughput Transcriptome Studies Gene Set Analysis with Covariates A Comparative Study of a Novel AE-nLMS Filter and Two Traditional Filters in Predicting Respiration Induced Motion of the Tumor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1