S. Johnston, Fei Yan, Jian V. Li, K. Zaunbrecher, M. Romero, M. Al‐Jassim, O. Sidelkheir, A. Blosse
{"title":"多晶硅太阳电池缺陷区域的温度依赖性光致发光成像和表征","authors":"S. Johnston, Fei Yan, Jian V. Li, K. Zaunbrecher, M. Romero, M. Al‐Jassim, O. Sidelkheir, A. Blosse","doi":"10.1109/PVSC.2011.6185848","DOIUrl":null,"url":null,"abstract":"Photoluminescence (PL) imaging is used to detect areas in multi-crystalline silicon that appear dark in band-to-band imaging due to high recombination. Steady-state PL intensity can be correlated to effective minority-carrier lifetime, and its temperature dependence can provide additional lifetime-limiting defect information. An area of high defect density has been laser cut from a multi-crystalline silicon solar cell. Both band-to-band and defect-band PL imaging have been collected as a function of temperature from ∼85 to 350 K. Band-to-band luminescence is collected by an InGaAs camera using a 1200-nm short-pass filter, while defect band luminescence is collected using a 1350-nm long pass filter. The defect band luminescence is characterized by cathodoluminescence. Small pieces from adjacent areas within the same wafer are measured by deep-level transient spectroscopy (DLTS). DLTS detects a minority-carrier electron trap level with an activation energy of 0.45 eV on the sample that contained defects as seen by imaging.","PeriodicalId":373149,"journal":{"name":"2011 37th IEEE Photovoltaic Specialists Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Temperature-dependent Photoluminescence imaging and characterization of a multi-crystalline silicon solar cell defect area\",\"authors\":\"S. Johnston, Fei Yan, Jian V. Li, K. Zaunbrecher, M. Romero, M. Al‐Jassim, O. Sidelkheir, A. Blosse\",\"doi\":\"10.1109/PVSC.2011.6185848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photoluminescence (PL) imaging is used to detect areas in multi-crystalline silicon that appear dark in band-to-band imaging due to high recombination. Steady-state PL intensity can be correlated to effective minority-carrier lifetime, and its temperature dependence can provide additional lifetime-limiting defect information. An area of high defect density has been laser cut from a multi-crystalline silicon solar cell. Both band-to-band and defect-band PL imaging have been collected as a function of temperature from ∼85 to 350 K. Band-to-band luminescence is collected by an InGaAs camera using a 1200-nm short-pass filter, while defect band luminescence is collected using a 1350-nm long pass filter. The defect band luminescence is characterized by cathodoluminescence. Small pieces from adjacent areas within the same wafer are measured by deep-level transient spectroscopy (DLTS). DLTS detects a minority-carrier electron trap level with an activation energy of 0.45 eV on the sample that contained defects as seen by imaging.\",\"PeriodicalId\":373149,\"journal\":{\"name\":\"2011 37th IEEE Photovoltaic Specialists Conference\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 37th IEEE Photovoltaic Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2011.6185848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 37th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2011.6185848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temperature-dependent Photoluminescence imaging and characterization of a multi-crystalline silicon solar cell defect area
Photoluminescence (PL) imaging is used to detect areas in multi-crystalline silicon that appear dark in band-to-band imaging due to high recombination. Steady-state PL intensity can be correlated to effective minority-carrier lifetime, and its temperature dependence can provide additional lifetime-limiting defect information. An area of high defect density has been laser cut from a multi-crystalline silicon solar cell. Both band-to-band and defect-band PL imaging have been collected as a function of temperature from ∼85 to 350 K. Band-to-band luminescence is collected by an InGaAs camera using a 1200-nm short-pass filter, while defect band luminescence is collected using a 1350-nm long pass filter. The defect band luminescence is characterized by cathodoluminescence. Small pieces from adjacent areas within the same wafer are measured by deep-level transient spectroscopy (DLTS). DLTS detects a minority-carrier electron trap level with an activation energy of 0.45 eV on the sample that contained defects as seen by imaging.