鲁棒实时极端头部姿态估计

S. Tulyakov, R. Vieriu, Stanislau Semeniuta, N. Sebe
{"title":"鲁棒实时极端头部姿态估计","authors":"S. Tulyakov, R. Vieriu, Stanislau Semeniuta, N. Sebe","doi":"10.1109/ICPR.2014.393","DOIUrl":null,"url":null,"abstract":"This paper proposes a new framework for head pose estimation under extreme pose variations. By augmenting the precision of a template matching based tracking module with the ability to recover offered by a frame-by-frame head pose estimator, we are able to address pose ranges for which face features are no longer visible, while maintaining state-of-the-art performance. Experimental results obtained on a newly acquired 3D extreme head pose dataset support the proposed method and open new perspectives in approaching real-life unconstrained scenarios.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Robust Real-Time Extreme Head Pose Estimation\",\"authors\":\"S. Tulyakov, R. Vieriu, Stanislau Semeniuta, N. Sebe\",\"doi\":\"10.1109/ICPR.2014.393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new framework for head pose estimation under extreme pose variations. By augmenting the precision of a template matching based tracking module with the ability to recover offered by a frame-by-frame head pose estimator, we are able to address pose ranges for which face features are no longer visible, while maintaining state-of-the-art performance. Experimental results obtained on a newly acquired 3D extreme head pose dataset support the proposed method and open new perspectives in approaching real-life unconstrained scenarios.\",\"PeriodicalId\":142159,\"journal\":{\"name\":\"2014 22nd International Conference on Pattern Recognition\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2014.393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

提出了一种极端姿态变化下头部姿态估计的新框架。通过提高基于模板匹配的跟踪模块的精度,以及由一帧一帧的头部姿态估计器提供的恢复能力,我们能够解决面部特征不再可见的姿态范围,同时保持最先进的性能。在新获得的三维极端头部姿态数据集上获得的实验结果支持了所提出的方法,并为接近现实生活中的无约束场景开辟了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Real-Time Extreme Head Pose Estimation
This paper proposes a new framework for head pose estimation under extreme pose variations. By augmenting the precision of a template matching based tracking module with the ability to recover offered by a frame-by-frame head pose estimator, we are able to address pose ranges for which face features are no longer visible, while maintaining state-of-the-art performance. Experimental results obtained on a newly acquired 3D extreme head pose dataset support the proposed method and open new perspectives in approaching real-life unconstrained scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time Tracking via Deformable Structure Regression Learning Traffic Camera Anomaly Detection Velocity-Based Multiple Change-Point Inference for Unsupervised Segmentation of Human Movement Behavior Volume Reconstruction for MRI Anomaly Detection through Spatio-temporal Context Modeling in Crowded Scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1