基于Krylov子空间方法的一种新的多阶段嵌套维纳滤波器的反向递归

M. Joham, Y. Sun, M. Zoltowski, M. Honig, J. S. Goldstein
{"title":"基于Krylov子空间方法的一种新的多阶段嵌套维纳滤波器的反向递归","authors":"M. Joham, Y. Sun, M. Zoltowski, M. Honig, J. S. Goldstein","doi":"10.1109/MILCOM.2001.986041","DOIUrl":null,"url":null,"abstract":"The multi-stage nested Wiener filter (MSNWF) can be identified to be the solution of the Wiener-Hopf equation in the Krylov subspace of the covariance matrix of the observation and the crosscorrelation vector of the observation and the desired signal. Therefore, the Arnoldi algorithm which arises from the MSNWF development can be replaced by the Lanczos algorithm leading to a simpler computation of the Krylov subspace basis. Moreover, the foundation in the Krylov subspace framework helps to derive an order-recursive representation of the MSNWF which generates the filter for rank D in terms of the filter for rank D-1. The new backward recursion is used to design a linear equalizer filter in an enhanced data rates for GSM evolution (EDGE) system. Simulation results show the ability of the MSNWF to reduce the receiver complexity while the system performance is unchanged.","PeriodicalId":136537,"journal":{"name":"2001 MILCOM Proceedings Communications for Network-Centric Operations: Creating the Information Force (Cat. No.01CH37277)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A new backward recursion for the multi-stage nested Wiener filter employing Krylov subspace methods\",\"authors\":\"M. Joham, Y. Sun, M. Zoltowski, M. Honig, J. S. Goldstein\",\"doi\":\"10.1109/MILCOM.2001.986041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multi-stage nested Wiener filter (MSNWF) can be identified to be the solution of the Wiener-Hopf equation in the Krylov subspace of the covariance matrix of the observation and the crosscorrelation vector of the observation and the desired signal. Therefore, the Arnoldi algorithm which arises from the MSNWF development can be replaced by the Lanczos algorithm leading to a simpler computation of the Krylov subspace basis. Moreover, the foundation in the Krylov subspace framework helps to derive an order-recursive representation of the MSNWF which generates the filter for rank D in terms of the filter for rank D-1. The new backward recursion is used to design a linear equalizer filter in an enhanced data rates for GSM evolution (EDGE) system. Simulation results show the ability of the MSNWF to reduce the receiver complexity while the system performance is unchanged.\",\"PeriodicalId\":136537,\"journal\":{\"name\":\"2001 MILCOM Proceedings Communications for Network-Centric Operations: Creating the Information Force (Cat. No.01CH37277)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2001 MILCOM Proceedings Communications for Network-Centric Operations: Creating the Information Force (Cat. No.01CH37277)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM.2001.986041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 MILCOM Proceedings Communications for Network-Centric Operations: Creating the Information Force (Cat. No.01CH37277)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2001.986041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

多级嵌套维纳滤波器(MSNWF)可识别为观测值协方差矩阵的Krylov子空间中维纳-霍普夫方程的解以及观测值与期望信号的相互关系向量。因此,由MSNWF发展而来的Arnoldi算法可以被Lanczos算法所取代,从而使Krylov子空间基的计算更加简单。此外,Krylov子空间框架中的基础有助于导出MSNWF的有序递归表示,该表示根据秩D-1的滤波器生成秩D的滤波器。在GSM演进(EDGE)系统中,利用新的倒向递归设计了一个提高数据速率的线性均衡器滤波器。仿真结果表明,在保持系统性能不变的情况下,MSNWF能够降低接收机的复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new backward recursion for the multi-stage nested Wiener filter employing Krylov subspace methods
The multi-stage nested Wiener filter (MSNWF) can be identified to be the solution of the Wiener-Hopf equation in the Krylov subspace of the covariance matrix of the observation and the crosscorrelation vector of the observation and the desired signal. Therefore, the Arnoldi algorithm which arises from the MSNWF development can be replaced by the Lanczos algorithm leading to a simpler computation of the Krylov subspace basis. Moreover, the foundation in the Krylov subspace framework helps to derive an order-recursive representation of the MSNWF which generates the filter for rank D in terms of the filter for rank D-1. The new backward recursion is used to design a linear equalizer filter in an enhanced data rates for GSM evolution (EDGE) system. Simulation results show the ability of the MSNWF to reduce the receiver complexity while the system performance is unchanged.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-user detection in alpha stable noise An improved forwarding protocol for updating channel state information in mobile FH wireless networks Client application considerations for low bandwidth communications using STANAG 5066 Digital communication using low-rank noise processes: subspace detectors Landmark routing in large wireless battlefield networks using UAVs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1