使用机器学习技术预测作物类型的产量和给定地块的需水量

Nitin Padriya, Nimisha Patel
{"title":"使用机器学习技术预测作物类型的产量和给定地块的需水量","authors":"Nitin Padriya, Nimisha Patel","doi":"10.11591/ijres.v12.i3.pp503-508","DOIUrl":null,"url":null,"abstract":"Internet of things (IoT) smart technology enables new digital agriculture. Technology has become necessary to address today's challenges, and many sectors are automating their processes with the newest technologies. By maximizing fertiliser use to boost plant efficiency, smart agriculture, which is based on IoT technology, intends to assist producers and farmers in reducing waste while improving output. With IoT-based smart farming, farmers may better manage their animals, develop crops, save costs, and conserve resources. Climate monitoring, drought detection, agriculture and production, pollution distribution, and many more applications rely on the weather forecast. The accuracy of the forecast is determined by prior weather conditions across broad areas and over long periods. Machine learning algorithms can help us to build a model with proper accuracy. As a result, increasing the output on the limited acreage is important. IoT smart farming is a high-tech method that allows people to cultivate crops cleanly and sustainably. In agriculture, it is the use of current information and communication technologies.","PeriodicalId":158991,"journal":{"name":"International Journal of Reconfigurable and Embedded Systems (IJRES)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting yield of crop type and water requirement for a given plot of land using machine learning techniques\",\"authors\":\"Nitin Padriya, Nimisha Patel\",\"doi\":\"10.11591/ijres.v12.i3.pp503-508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet of things (IoT) smart technology enables new digital agriculture. Technology has become necessary to address today's challenges, and many sectors are automating their processes with the newest technologies. By maximizing fertiliser use to boost plant efficiency, smart agriculture, which is based on IoT technology, intends to assist producers and farmers in reducing waste while improving output. With IoT-based smart farming, farmers may better manage their animals, develop crops, save costs, and conserve resources. Climate monitoring, drought detection, agriculture and production, pollution distribution, and many more applications rely on the weather forecast. The accuracy of the forecast is determined by prior weather conditions across broad areas and over long periods. Machine learning algorithms can help us to build a model with proper accuracy. As a result, increasing the output on the limited acreage is important. IoT smart farming is a high-tech method that allows people to cultivate crops cleanly and sustainably. In agriculture, it is the use of current information and communication technologies.\",\"PeriodicalId\":158991,\"journal\":{\"name\":\"International Journal of Reconfigurable and Embedded Systems (IJRES)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reconfigurable and Embedded Systems (IJRES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijres.v12.i3.pp503-508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reconfigurable and Embedded Systems (IJRES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijres.v12.i3.pp503-508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)智能技术使新型数字农业成为可能。技术已经成为应对当今挑战的必要条件,许多行业正在使用最新技术实现流程自动化。通过最大限度地使用肥料来提高植物效率,基于物联网技术的智能农业旨在帮助生产者和农民减少浪费,同时提高产量。有了基于物联网的智能农业,农民可以更好地管理他们的动物,开发作物,节省成本,节约资源。气候监测、干旱探测、农业和生产、污染分布以及更多的应用都依赖于天气预报。预报的准确性是由以前的天气条件在大范围和长时间内决定的。机器学习算法可以帮助我们建立一个具有适当精度的模型。因此,在有限的种植面积上提高产量是很重要的。物联网智能农业是一种高科技方法,可以让人们以清洁和可持续的方式种植作物。在农业方面,它是对当前信息和通信技术的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting yield of crop type and water requirement for a given plot of land using machine learning techniques
Internet of things (IoT) smart technology enables new digital agriculture. Technology has become necessary to address today's challenges, and many sectors are automating their processes with the newest technologies. By maximizing fertiliser use to boost plant efficiency, smart agriculture, which is based on IoT technology, intends to assist producers and farmers in reducing waste while improving output. With IoT-based smart farming, farmers may better manage their animals, develop crops, save costs, and conserve resources. Climate monitoring, drought detection, agriculture and production, pollution distribution, and many more applications rely on the weather forecast. The accuracy of the forecast is determined by prior weather conditions across broad areas and over long periods. Machine learning algorithms can help us to build a model with proper accuracy. As a result, increasing the output on the limited acreage is important. IoT smart farming is a high-tech method that allows people to cultivate crops cleanly and sustainably. In agriculture, it is the use of current information and communication technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
Internet of things based smart photovoltaic panel monitoring system An efficient novel dual deep network architecture for video forgery detection Video saliency detection using modified high efficiency video coding and background modelling A novel compression methodology for medical images using deep learning for high-speed transmission Frequency reconfigurable microstrip patch antenna for multiband applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1